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Abstract

We investigate how environmental regulation under the U.S. Superfund pro-
gram and Clean Air Act affected exposures to fine particulate air pollution and
hazardous waste for Americans over age 65 during the 2000’s. Our research
design uses quasi-random features of how the two programs enforce regula-
tions and provide information to estimate their causal effects on migration
and pollution exposure. We show that senior Americans’ average pollution
exposures declined substantially. We also show that spatially heterogeneous
improvements in environmental quality had little-to-no effect on residential
sorting. This led to relatively large reductions in pollution for seniors living
in the dirtiest areas.
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1 Introduction

People over the age of 65 are the fastest growing age group in many countries and

the primary beneficiaries of national policies targeting health and environmental

quality. In the United States, senior citizens account for approximately 18% of the

population and 75% of premature deaths avoided by regulating air pollution (EPA,

1999a, 2011b)). Yet relatively little is known about how environmental regulations

affect pollution exposure among senior Americans.

Prior research on the distributional effects of regulation focused primarily on

understanding the causes and consequences of heterogeneity in pollution exposure

for subpopulations that differ by race and income, irrespective of age (Banzhaf et

al., 2019). It is important to develop similar knowledge for seniors because they are

believed to be particularly sensitive to pollution due to a combination of biological

and behavioral factors (EPA, 1999b, 2003, 2011a, 2019). Equally important is the

fact that seniors are less likely than younger adults to have constraints on their

spatial mobility due to jobs and school-age children. In principle, this could increase

the rates at which seniors respond to changes in environmental quality by moving

(Graves and Waldman, 1991; Banzhaf and Walsh, 2008; Mathes, 2024). Migration

matters for evaluating the distributional consequences of environmental regulation

because residential sorting can redirect benefits from the incumbent residents of

neighborhoods targeted for cleanup to non-residents who move in as neighborhoods

gentrify (e.g. Sieg et al., 2004; Depro et al., 2015; Staiger et al., 2024).

This study investigates how environmental regulation under the U.S. Super-

fund program and Clean Air Act affected senior citizens’ exposures to hazardous

waste and fine particulate air pollution from 2000 through 2013. We develop pol-

lution exposure histories for nearly 13 million seniors that incorporate changes in

exposure caused by their individual migration decisions. Then we leverage quasi-

experimental features of each regulatory program to estimate how environmental

regulation affected migration and pollution exposure among seniors in general, and
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among subpopulations that differ in their pollution sensitivities, according to the

U.S. Environmental Protection Agency (EPA), due to differences in race, wealth,

and health.

Our analysis combines data from several sources. We extract annual information

on individuals’ precise residential locations from administrative records for a random

20% sample of all U.S. Medicare beneficiaries over age 65. These data also allow us to

observe each individual’s birth year, death year, gender, race, if and when they were

first diagnosed with various chronic medical conditions, and whether they claimed

Medicaid benefits that are primarily restricted to individuals with low wealth. We

measure their residential exposure to fine particulate air pollution smaller than 2.5

microns in diameter (PM2.5) using data from Di et al. (2017) on annual average

concentrations in a one square kilometer grid spanning the nation. Then we measure

the Euclidean distance from each individual’s residence to the nearest Superfund

hazardous waste site, using the universe of sites that were on the EPA’s National

Priority List (NPL) (commonly known as Superfund) from its inception in 1980

through 2022. These data include key milestones in both the timing of exposure to

hazardous waste, and the timing of information about that exposure. Specifically, we

track the date that EPA proposed adding each site to the NPL (publicly identifying

the site as a potentially significant health risk for nearby residents) and the dates

that EPA deleted sites from the NPL (publicly certifying that the risk is no longer

significant).

We use these data to document several new facts about senior Americans’ pol-

lution exposures. First, we show that average exposure to both PM2.5 and known

hazardous waste sites declined substantially from 2000 to 2013. Average exposure

to PM2.5 declined by 35% and the share of seniors living less than three kilometers

of a Superfund site declined by 21%. Second, the sizes of these reductions differed,

on average, by race and wealth. Black (or African-American) seniors experienced

relatively larger reductions in PM2.5 than White (non-Hispanic) seniors. On the

other hand, the Black-White gap in exposure to hazardous waste sites grew during
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the study period. We observe analogous trends when we use the receipt of Med-

icaid benefits to divide individuals into wealthier and poorer groups. The wealth

gap in exposure to PM2.5 declined whereas the wealth gap in exposure to hazardous

waste sites increased. In contrast, we see virtually no difference in average pollution

exposure between individuals who have been diagnosed with cardiopulmonary con-

ditions that increase their sensitivity to pollution, and those who have not. Finally,

we see a large decline in exposure to “hidden” pollution, which we define as yet-to-be

discovered hazardous waste sites and PM2.5 grid cells where ambient concentrations

violate federal regulatory standards in areas without federal air quality monitoring

stations.

Next, we estimate the effects of each regulatory program on migration and pol-

lution exposure. For the Clean Air Act (CAA) we analyze the EPA’s enforcement of

the National Ambient Air Quality Standard for PM2.5 starting in 2005. Specifically,

we follow prior literature in using each county’s non-attainment status interacted

with baseline PM2.5 concentrations to develop an instrument for changes in air pol-

lution exposure during the decade (e.g. Bento et al., 2015; Bishop et al., 2023; Sager

and Singer, 2025). The results from our instrumental variables estimator show that

CAA-induced reductions in air pollution had virtually no effect on seniors’ migra-

tion patterns. We also demonstrate that enforcement of the EPA’s PM2.5 standard

was directly responsible for a large share of the reduction in seniors’ exposure to air

pollution after 2005, as well as the concomitant reductions in exposure gaps by race

and wealth.

For the Superfund program, we leverage the staggered timing of proposal and

deletion dates for different sites to develop a spatial differences-in-differences esti-

mator for how seniors’ residential sorting behaviors are affected by new informa-

tion about environmental contamination. We find virtually no effect of information

shocks about land contamination on seniors’ migration patterns. While information

about land contamination does not appear to systematically affect migration, we

observe that the individuals who choose to move in to neighborhoods around Su-
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perfund sites are more likely to be Black and to receive Medicaid benefits. These

immigration patterns help to explain the observed widening of race and wealth gaps

in Superfund site exposure from 2000 to 2013.

Thus, our findings from the Superfund program and the Clean Air Act suggest

that senior Americans’ residential location decisions are relatively insensitive to

regulatory-induced changes in the spatial distribution of pollution. This implies that

younger adults’ residential location decisions will tend to have long-lasting effects

on their lifetime pollution exposures. It also suggests that residential sorting and

environmental gentrification do not substantially unravel the benefits of regulation

for seniors living in improved areas. This is important for measuring the benefits of

regulation because seniors are known to be sensitive to local pollution (e.g. Schlenker

and Walker, 2016; Deryugina et al., 2019; Bishop et al., 2023, 2024).

Our analysis and findings contribute to three distinct literatures. First, we add

to literature examining the distributional consequences of environmental regulation

for pollution exposure. Prior studies focused on how environmental regulations

produce heterogeneous effects on exposure for demographic groups that differ in

race and income (e.g. Banzhaf and Walsh, 2013; Depro et al., 2015; Banzhaf et

al., 2019; Bakkensen and Ma, 2020; Hausman and Stolper, 2021; Cassidy et al.,

2022; Currie et al., 2023; Cain et al., 2024; Sager and Singer, 2025). We extend this

literature by focusing on seniors. Conditional on advanced age, we also examine how

exposures differ based on other demographic characteristics that the EPA associates

with greater pollution sensitivity. In addition to conventional measures of race and

wealth, we examine how exposures vary based on biological sensitivity caused by

the presence of cardiopulmonary diseases.

Second, our study adds to literature on the economics of residential sorting.

Theoretical models of Tiebout sorting predict that some households will respond to

changes in the spatial distribution of environmental quality by moving (e.g. Sieg et

al., 2004; Banzhaf and Walsh, 2013; Kuminoff et al., 2013) and there is substantial

evidence that local quality changes do cause housing prices to adjust and people
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to move (e.g. Banzhaf and Walsh, 2008; Bento et al., 2015; Haninger et al., 2017;

Ma, 2019; Bakkensen and Ma, 2020; Guignet et al., 2023; Guignet and Nolte, 2024;

Cheng et al., 2024; Sager and Singer, 2025). We add to this literature by providing

direct evidence on the extent to which senior citizens respond to environmental

quality changes by moving. While their overall migration rate is not trivial—21%

move at least once during our study period—it appears to be relatively insensitive

to environmental quality changes.

Finally, we add to literature on the role of environmental information in consumer

choice. Provision of information about ambient pollution has been shown to modify

the consumption of housing and other goods (e.g. Haninger et al., 2017; Bakkensen

and Ma, 2020; Christensen and Timmins, 2022; Guignet et al., 2023; Guignet and

Nolte, 2024; Barwick et al., 2024; Cheng et al., 2024; Sager and Singer, 2025).

One hypothesis for the existence of socioeconomic gaps in pollution exposure is

that it is driven by heterogeneity in attention or access to information (Ma, 2019;

Hausman and Stolper, 2021). Our analysis of hidden pollution is consistent with

this hypothesis in the sense that we find Black seniors and those whose wealth

is sufficiently low to receive Medicaid benefits are more likely to live near not-

yet-discovered Superfund sites in 2000, and more likely to choose to move into

neighborhoods around those sites between 2001 and 2013.

2 Data

2.1 Medicare Sample of Individuals Over Age 65

The Medicare program provides near universal health insurance for Americans over

age 65. The U.S. Centers for Medicare and Medicaid Services (CMS) maintains

records on each individual’s birth date, residential location history, medical history,

and death date. It also records information on race and annual Medicaid enroll-

ment. Medicaid enrollment provides a binary proxy for wealth because eligibility is

generally limited to individuals whose income and assets fall below federal thresh-
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olds for receiving supplemental security income.1 For example, in the year 2000, the

eligibility threshold on assets was $2,000 for individuals and $3,000 for couples.

We start with a random 20% sample of age-65-and-above full-year Medicare

enrollees in the year 2000. The sample contains approximately 6 million individuals.

We follow them through 2013, or until they die, and add a 20% random sample of

new 65 year old enrollees each year. These data allow us to follow the year-2000

cohort as it aged, or to analyze a random sample of the over-65 population as it

evolved from 2000 through 2013.

We use CMS administrative records from Medicare Chronic Condition Ware-

house Files to identify if and when each individual was first diagnosed with heart

or lung diseases that are thought to increase the sensitivity to particulate air pol-

lution (EPA, 2003). Specifically, we create an indicator for the first year that each

individual was diagnosed with any of the following conditions: acute myocardial in-

farction (i.e. nonfatal heart attack), asthma, chronic obstructive pulmonary disease

(COPD), congestive heart failure, heart disease, or lung cancer.

Importantly, the CMS files include ZIP+4 codes for each individual’s sequence

of residential addresses from 2000 through 2013. Each ZIP+4 code corresponds to

a unique mail delivery point, such as a house, one floor of an apartment building,

or one side of a street on a city block. This information is close to street address

in terms of spatial precision. We use ZIP+4 centroids to track migration patterns

and determine each individual’s annual residential exposure to air pollution and

proximity to Superfund sites.

2.2 Air Pollution Exposure, Regulation, and Information

The EPA’s most recent benefit-cost analysis of the Clean Air Act indicates that

the benefits of regulating air pollution in the United States are driven by reducing

exposure to fine particulate matter smaller than 2.5 microns in diameter (i.e. PM2.5)

(EPA, 2011b). Moreover, Deryugina et al. (2019) and Bishop et al. (2023) provide
1States can adjust these thresholds.
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casual evidence that elevated residential exposure to PM2.5 increases the risks of

morbidity and mortality among the over-65 population. Therefore, we focus on

measuring seniors’ residential exposure to PM2.5.

The data we use are from Di et al. (2017). They describe annual average concen-

trations of PM2.5 on a 1km by 1km grid covering the United States. Concentrations

in each grid cell were predicted using an artificial neural network that incorporated

information from a variety of sources including satellite-based measurements, EPA

air quality monitoring station records, a chemical transport model, land use data,

and meteorological data. We used latitude and longitude coordinates for grid cell

centroids and residential ZIP+4 centroids to assign each individual to a grid cell

each year from 2000 through 2013.

In 2005, the EPA started to enforce a National Ambient Air Quality Standard

on PM2.5. Counties were required to report annual average PM2.5 concentrations at

each air quality monitoring station from 2001-2003. Counties containing monitors

with annual average concentrations exceeding 15.05 µg/m3 were classified as “nonat-

tainment” and required to work with local regulators to reduce emissions. Counties

in which all monitoring stations reported concentrations below 15.05 µg/m3 were

classified as “attainment” and counties without air quality monitoring stations were

designated “unclassifiable”. Attainment and unclassifiable counties were generally

not subjected to additional regulation.2 This regulatory approach led to larger re-

ductions in PM2.5 for nonattainment counties compared to attainment counties over

the following years (Bishop et al., 2023; Currie et al., 2023). We use the EPA’s

Greenbook and AirNow files to identify which counties were designated as attain-

ment, nonattainment, and unclassifiable.
2An exception would be if such counties were believed to contribute to nonattainment designa-

tions in other counties due to air pollution transport.
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2.3 Superfund Site Exposure, Regulation, and Information

The EPA’s Superfund Program identifies hazardous waste sites that pose a risk to

human health and the environment, and remediates them.3 Exposure pathways are

site-specific and may include ground water migration, surface water migration, air

migration, and soil contamination. The EPA identifies the elderly, and minority and

low-income individuals, as specific sub-populations that can be disproportionately

affected by exposure (EPA, 2011a).

We use EPA data on the universe of 1,819 sites that were ever proposed for

cleanup as of March 18, 2022. These data include latitude and longitude coordinates

for each site, an index of health risk, and the dates for three milestones in the

cleanup process: proposal, listing, and deletion. We use this information to measure

how each individual’s proximity to the nearest Superfund site evolved over time

as the individual did or did not move and as sites were or were not remediated.

The remediation process can take decades to complete. While 80% of the sites

were proposed prior to the beginning of our study period in 2000, only 21% were

remediated by the end of our study period in 2013.

The proposal, listing, and deletion milestones delineate both the timing of ex-

posure and the timing of information about exposure. After a potential hazardous

waste site is discovered it is inspected and assigned a Hazard Ranking System (HRS)

score that is designed to index the threat to human health and the environment.4

If the HRS score is sufficiently high, the EPA will propose adding the site to the

National Priority List (NPL) of sites scheduled for cleanup and invite the public to
3In the 1970s, two significant environmental events – the ‘Love Canal Emergency’ in New

York and ‘Valley of Drums’ in Kentucky – led to the Comprehensive Environmental Response,
Compensation, and Liability Act (CERCLA). It was responsible for mitigating environmental
dangers caused by the unregulated hazardous waste landfills and later became commonly known
as the Superfund Program. The federal government has been the main source of funding, with
annual appropriations from $1 to $2 billion between 1999 and 2013. The other potential funding
sources are state governments, which pay 10% of cleanup costs, and private parties who contributed
to the creation of the hazardous waste sites.

4A site is discovered when a private citizen, state agency, or EPA regional office notifies the
EPA of the potential release of hazardous waste.
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comment.5 After the public comment period, the EPA decides whether or not to

add the site to the NPL. Listed sites are scheduled for long-term remediation. After

a site is remediated, it is deleted from the NPL.

At each of these three milestones, the EPA provides the public with informa-

tion about the site via local news media and interaction with community advisory

groups.6 It also holds formal public comment periods. By proposing a site for the

NPL, the EPA signals that it believes there is a significant health risk that may

justify future mitigation effort. This may be an information shock to local residents

because it is the first point of the mitigation process at which the EPA necessarily

engages the public.7 Listing a site on the NPL confirms the presence of that risk

and signals that the site will be remediated in the future, though remediation may

take decades. Deleting a site from the NPL indicates that the EPA judges the site

to no longer pose a significant threat to human health or the environment.

3 Descriptive Evidence

3.1 Analysis Sample

Prior to analyzing the data, we dropped 8% of individuals whose administrative

records lacked ZIP+4 codes for one or more years. Their residential locations are

often defined by coarser 5-digit ZIP codes that do not allow us to determine the

precise distance to Superfund sites. We also dropped 1.3% of individuals who were

ever missing information on Medicaid enrollment, 0.6% who were missing informa-

tion on race, and 0.02% who were born before 1900. These data cuts left us with

an unbalanced panel sample of 12.9 million individuals [henceforth, the “all 65+”

sample]. We observe their residential exposure to PM2.5 and proximity to Super-

fund sites from the year 2000 (or when they turned 65) through 2013 (or when they

died). The subset of 6.2 million individuals who were born before 1935 comprise a
5The threshold HRS score is 28.5, but cleanup efforts are contingent on funding availability.
6Appendix Figure A.1 provides an example of public notice for a proposed site.
7The EPA may or may not inform the public when it inspects a site.
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year-2000 senior Medicare cohort sample that we follow through 2013 or until they

died [henceforth, the “born before 1935” sample].

The average individual in the all 65+ sample was born in 1933. Approximately

81% are coded as Non-Hispanic White, 9% as Black (or African-American), 7% as

Hispanic, and 2% as Asian. Turning to measures of wealth and health that align with

EPA-defined pollution-sensitive groups, we observe 13.4% of individuals receiving

Medicaid benefits in at least one year after they turned 65, and 43% who were ever

diagnosed with one or more heart or lung diseases by 2013 (asthma, COPD, heart

failure, heart disease, lung cancer). Finally, 21% of individuals moved at least once

during our study period, which underscores the potential for residential sorting to

modify pollution exposure.

3.2 Seniors’ Exposure to Air Pollution and Hazardous Waste, 2000-2013

Figure 1 documents new facts about seniors’ residential exposure to air pollution

and hazardous waste during the 2000’s. The solid line in Figure 1a shows that

annual average exposure to PM2.5 among the 65+ sample declined from about 13

µg/m3 in 2000 to less than 9 µg/m3 in 2013. This downward trend reflects the net

effect of changes in emissions, weather, migration, and sample composition caused

by differences in residential sorting among older individuals who died before the end

of 2013 and younger individuals who turned 65 after 2000.

To start to explore how residential sorting affected seniors’ air pollution exposure,

we construct a counterfactual “no migration” exposure measure. Specifically, for the

21% of individuals who ever moved in our data, we replace their actual post-move

exposure with the exposure they would have experienced had they not moved. This

counterfactual measure is shown by the dashed line in Figure 1a. The third line

in the figure, which is dotted, reports actual exposure for the year-2000 cohort

only, thus purging the effect of differences in residential sorting among younger and

older seniors. Strikingly, the three lines are visually indistinguishable. Thus, while

individuals may have substantially increased or decreased their exposure to PM2.5
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Figure 1: Annual Average Exposure to Air Pollution and Hazardous Waste

Note: Panel (a) shows three measures of annual average residential exposure to PM2.5 among
Americans over age 65. The solid line reports actual exposure for the random Medicare sample
of 12.9 million individuals. The dashed line shows their counterfactual exposure had there been
no migration after the year 2000. The dotted line shows actual exposure among the subset of 6.2
million individuals who were over age 65 in 2000. Panel (b) shows the fraction of individuals living
within 3 kilometers of a current or future NPL site each year. The solid, dashed, and dotted lines
are defined the same as in Panel (a).

by moving, the population of seniors did not systematically move toward cleaner or

dirtier locations during the 2000’s. While this annual evidence for seniors is new,

it is unsurprising in light of evidence in Currie et al. (2023) that migration had a

relatively small effect on changes in PM2.5 exposure among White and Black subsets

of the general population (all ages) between 2000 and 2015.
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Figure 1b presents comparable evidence for seniors’ annual residential exposure

to hazardous waste sites. We focus specifically on sites that that EPA judged to

pose a significant risk to human health and environment. Each year, this includes

the subset of sites that the EPA ever proposed adding to the NPL and that had

not been deleted by the start of the year. This includes sites that were proposed in

future years (and potentially unknown at the time we measure exposure) as well as

sites with planned or ongoing mitigation efforts. To quantify exposure, we follow

prior literature in using a binary variable for whether an individual lived near a site,

specifically whether they lived within 3 kilometers based on Euclidean distance. The

3km distance falls near the middle of the range of distances commonly used to mea-

sure how exposure to NPL sites and other localized sources of land contamination

affect human health and property values (Currie et al., 2011; Haninger et al., 2017;

Persico et al., 2020; Klemick et al., 2020; Cassidy et al., 2022; Guignet et al., 2023;

Cheng et al., 2024; Guignet and Nolte, 2024).8

135 sites were deleted from the NPL between 2000 and 2013, reducing exposure

for nearby residents. The share of the all 65+ sample that lived near a site declined

from 7.8% to 6.1%. Figure 1b decomposes this aggregate trend into three mecha-

nisms. First, the dotted line shows that the exposure rate among the born before

1935 cohort declined by 1.2 percentage points, a 15% decline. This is the combined

effect of remediated sites being deleted from the NPL, migration away from remain-

ing sites, and sample attrition due to slightly higher mortality near those sites. Most

of the decline is through the first two channels; higher mortality near sites only ex-

plains a 0.09 percentage point reduction in exposure. The role of migration away

from sites is reinforced by comparing the solid and dashed lines in 2013. Had the

all 65+ sample not moved, its exposure rate would have been 4% higher. Finally,

comparing the dashed and dotted lines suggests that younger cohorts that entered

the sample after 2000 were slightly less likely to live near NPL sites.
8Our qualitative findings are similar if we instead focus on larger or smaller distances.
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3.3 Demographic Gaps in Pollution Exposure

Figure 2 summarizes how exposure to particulate matter and hazardous waste dif-

fered among groups that the EPA classifies as being more or less vulnerable to

pollution for reasons other than age, specifically race, wealth, and health (EPA,

2011a, 2019, 2022). First, as a baseline for comparison to prior literature, we follow

Currie et al. (2023) in measuring the “race gap” in PM2.5 exposure between the av-

erage individual coded as Black (or African-American) in Medicare administrative

files and the average individual coded as White (non-Hispanic). These two groups

account for 90% of the all 65+ population during our study period and they have

been the focus of much of the economic literature on environmental justice (Banzhaf

et al., 2019; Currie et al., 2023).9 Figure 2a shows that average exposure among

Black seniors was 1.7 µg/m3 higher than among White seniors in 2000. This race

gap declined by 71% between 2000 and 2013, which is similar to the 65% decline

that Currie et al. (2023) report for all age groups between 2000 and 2015.

The dashed line in Figure 2a provides a measure of the “wealth gap” in air

pollution exposure by comparing exposure levels for individuals who did or did not

receive Medicaid benefits. Exposure was 0.85 µg/m3 higher among the lower-income

group of Medicaid beneficiaries in 2000, and this gap declined by 65% by 2013.

Finally, the dotted line shows that the “health gap” in exposure was closer to zero

and comparatively flat during the 2000’s. Average decadal exposure to PM2.5 among

individuals who were more sensitive to air pollution due to pre-existing heart and/or

lung diseases was 0.1 µg/m3 higher compared to those without cardiopulmonary

diseases.

In contrast, Figure 2b shows that the demographic gaps in exposure to hazardous

waste sites increased during the 2000’s. Since the probability of living within 3 km

of an NPL site is low, we report the exposure gaps as odds ratios. They imply
9It would be interesting to examine groups coded as Hispanic, Asian / Pacific Islander, and

American Indian / Alaska Native, but we exclude them here due to space constraints and smaller
samples.
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Figure 2: Demographic Gaps in Exposure to Air Pollution and Hazardous Waste

Note: Panel (a) shows differences in annual average residential exposure to PM2.5 between demo-
graphic groups. The solid line reports the difference between Black and White individuals. The
dashed line reports the difference between individuals who did and did not receive Medicaid ben-
efits each year. The dotted line reports the difference between individuals who had and had not
been previously diagnosed with cardiopulmonary diseases (see text for details). All three lines are
based on the all 65+ sample of 12.9 million individuals. Panel (b) makes the same demographic
comparisons as Panel (a) and reports odds ratios for the probability of living within 3 kilometers
of a current or future NPL site.

that, in 2000, the probability of living near an NPL site was 43% higher for Black

individuals, 27% higher for individuals receiving Medicaid benefits, and 1% higher

for individuals with cardiopulmonary illnesses. These gaps trended up during the

2000’s, increasing to 48%, 44%, and 5% respectively by 2013. In Sections 4 and 5 we
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test whether the trends in Figure 2 can be explained by differences in the extent to

which each demographic group responded to changes in air quality and the EPA’s

public disclosures about NPL sites by moving.

3.4 Information Frictions in Pollution Exposure

Figure 3a summarizes trends in exposure to undisclosed levels of PM2.5 and haz-

ardous waste. The solid line shows the share of individuals who lived in counties

that were not regulated for PM2.5, but whose annual average residential exposure to

PM2.5 nevertheless exceeded the EPA’s regulatory threshold of 15.05 µg/m3 based

on the data in Di et al. (2017). This occurs in counties that lack monitoring stations

for PM2.5, and in pollution “hot spots” located within counties that were classified as

attainment in 2005 based on monitor readings. The share declined from 6% in 2000

to 0.05% in 2013. The spike in 2005 is partly due to higher pollution in unmonitored

counties during that year (also visible in Figure 1a) and partly due to violations of

the regulatory threshold at locations within newly classified attainment counties.

While the downward trend is striking, we interpret it as a potentially noisy measure

due to the caveat that satellite-based measures for predicting pollution may tend to

have greater measurement errors at locations far from monitoring stations (Fowlie

et al., 2019).

The dashed line in Figure 3a shows the share of people living within 3 km of a

hazardous waste site that the EPA had yet to propose to the NPL. Since exposure

predates the EPA’s release of public information about site contamination, individ-

uals living near the site may have been unaware of the associated health risks. The

odds ratios in Figure 3b show that the probability of exposure was substantially

higher for Black and Medicaid-recipient groups. Moreover, these demographic odds

ratios are higher than for the broader set of NPL sites in Figure 2b. Overall, the

evidence on NPL sites in Figure 3 is consistent with the hypothesis in Ma (2019) and

? that lower-income and minority groups are more likely to live in more polluted

neighborhoods, in part, because they have less information about local environmen-
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Figure 3: Information Frictions in Residential Pollution Exposure

Note: In Panel (a) the solid line shows the share of individuals with annual average residential
exposure to PM2.5 that exceeds the EPA’s regulatory threshold of 15.05 µg/m3 but who live in
counties that are unmonitored or designated as attainment in 2005. The dashed line reports the
share of individuals living with 3 kilometers of a hazardous waste site that was first proposed for
the NPL in a future year. Both lines are based on the all 65+ sample of 12.9 million individuals.
Panel (b) uses odds ratios for the probability of living within 3 kilometers of a future NPL site to
report gaps in exposure for the same demographic groups as Figure 2.

tal quality. The upward trend in the odds ratios during the 2000’s and the steep

decline in the race gap from 2010 to 2013 could be explained by residential sorting

and/or by the timing of when sites were discovered in neighborhoods with higher

shares of Black seniors and Medicaid recipients. We investigate the role of migration

in Section 5.
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4 Effects of PM2.5 Regulation on Exposure and Migration

The trends in PM2.5 exposure shown in Figures 1a–3a reflect the combined effect

of several factors. These include the EPA’s direct regulation of PM2.5 under the

Clean Air Act (CAA) starting in 2005, residential sorting, compositional changes

in the 65+ population due to mortality and new 65-year-old entrants to Medicare,

and national trends in emissions driven by technology and other regulations. For

example, some of the decline in exposure was likely due to regulation of automobile

emissions and fuel switching from coal to natural gas. We estimate the extent to

which the trends in Figures 1a–3a can be explained specifically by enforcement of the

EPA’s PM2.5 standard, and the extent to which the casual effect of CAA regulation

on exposure was weakened or strengthened by residential sorting.

4.1 Effects on Clean Air Act Regulation on Exposure

We first estimate how enforcement of the EPA’s PM2.5 standard affected exposure

among the 65+ population. Specifically, we estimate how much of the change in

seniors’ PM2.5 exposures between 2001-2003 and 2011-2013 can be attributed to

the EPA’s designations of nonattainment areas in 2005. Our econometric approach

adapts the quasi-experimental design in Bishop et al. (2023) and Currie et al. (2023).

Our focal outcome is yit = PMit − basePMi, the difference between individual

i’s annual average residential exposure to PM2.5 in year t and a measure of baseline

concentrations at the location where the individual lived at the time nonattainment

designations were made. We define basePMi as the annual average concentrations

of PM2.5 from 2001-2003. This provides a counterfactual measure for exposures that

would have occurred in year t ≥ 2005 had PM2.5 not been directly regulated and

had individual i not moved. As we noted in Section 2.2, year 2005 nonattainment

designations were based on annual average concentrations recorded at monitoring

stations from 2001-2003.
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Equation (1) shows how we estimate the effect of CAA regulation on exposure.

yit = f(Zi, basePMi; βt) + δjt + ϵit. (1)

We regress yit on a function of baseline concentrations and an indicator, Zi, for

whether the individual lived in a county in 2005 that was designated as a nonat-

tainment area. Fixed effects for core business statistical areas (CBSAs) j = 1, ..., J

absorb changes in PM2.5 exposure that are common to both attainment and nonat-

tainment counties in different parts of the country. Importantly, nonattainment

status can vary between counties within a CBSA (Bishop et al., 2023). Finally, we

allow the regression parameters (βt, δjt) to evolve flexibly over time by estimating

separate regressions each year.

The parameter vector βt measures how regulation caused exposure to differ for

people who lived in nonattainment counties in 2005 compared to those who lived

in attainment counties, conditional on baseline exposure. We follow Bishop et al.

(2023) in specifying f(Zi, basePMi; βt) as linear function of Zi and interactions be-

tween Zi and a fourth-order polynomial function of basePMi. This specification

allows the regression to capture how treatment effects of regulation vary within and

between counties as a function of baseline exposure. In particular, this feature is

designed to capture the fact that local regulators are incentivized to target known

pollution hot spots within counties because a county’s nonattainment status is de-

termined by the annual average concentrations recorded at its dirtiest monitoring

station (Auffhammer et al., 2009).

We estimate Equation (1) using individuals who were over age 65 at the time

nonattainment designations were made in January 2005 and who survived through

the end of year t > 2005. There is sample attrition after 2005 due to mortality, but

no entry.10 For this sample, βt measures the net effect of three mechanisms. First,
10We exclude people who entered Medicare in 2006 or later because we are generally unable to

verify where they lived in 2005.
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it captures the “intent-to-treat” effect of regulation on exposure for non-movers.

Second, it captures changes in exposure caused by migration after 2005. Finally,

it captures compositional changes in exposure among the surviving sample due to

mortality. Thus, the estimator embeds any causal effects of regulation on migra-

tion and mortality, though it does not isolate those effects from the direct effect of

regulation on exposure.

We aggregate the heterogeneous marginal effects from Equation (1) to calculate

average treatment effects for specific groups according to Equation (2).

1

Nτ

∑
i∈τ

f(Zi, basePMi; βt), (2)

where Nτ denotes the number of individuals who belong to group τ , based on their

age, race, wealth, or health. Then we calculate differences between groups. This

approach captures how regulation affected demographic groups differently based on

the rates at which they lived in attainment versus nonattainment counties, and how

they sorted themselves over cleaner and dirtier neighborhoods within those counties

before and after regulation.

Table 1 reports our estimate for the effect of CAA regulation on PM2.5 exposure

among seniors in general, as well as our estimates for the effects of regulation on

gaps in exposure by race, wealth and health. These estimates are calculated by

averaging equation (2) over year-specific estimates for 2011, 2012, and 2013. This

three-year averaging smooths over idiosyncratic shocks and yields a measure that is

comparable with the measure of baseline exposure in 2001-2003.

We find that nonattainment designations reduced seniors’ exposure to PM2.5 by

1.59 µg/m3 in 2011-2013 relative to 2001-2003. This a 13% reduction relative to

baseline exposure. It is also equivalent to 45% of the total decline in average exposure

during that period, suggesting that CAA regulation of PM2.5 was a substantial driver

of the overall reduction in exposure during the 2000’s. Our 1.59 µg/m3 estimate for

seniors is similar to prior estimates for the effects of regulating PM2.5 on exposure
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Table 1: Effect of Nonattainment Designations on PM2.5 Exposures

exposure          
(age 65+)

race gap in 
exposure

wealth gap in 
exposure

health gap in 
exposure

-1.595*** -0.639*** -0.239*** -0.017
(0.039) (0.033) (0.031) (0.012)

Change from 2001-2003 
to 2011-2013

Note: The table shows estimates for causal changes in residential exposure to fine particulate
air pollution, measured in micrograms per cubic meter. Estimates are calculated by aggregating
Equation (2) over year-specific estimates of Equation (1) for 2011, 2012, and 2013. These regres-
sions use data on 2,393,960 individuals who were over age 65 and enrolled in Medicare at the time
nonattainment designations were made in 2005 and survived through the end of 2011. Sample
sizes decline slightly in 2012 and 2013 due to mortality. Standard errors are calculated using 1,000
bootstrap repetitions, clustered by Census tract.

among the general population (all ages) in Currie et al. (2023) and Sager and Singer

(2025).

We also find that CAA regulation reduced the gap in exposure between Black

and White seniors by 0.64 µg/m3. This reduction explains virtually all of the decline

shown in Figure 2a. Interestingly, this finding differs from the evidence in Currie et

al. (2023) and Sager and Singer (2025) that CAA regulation explains closer to 60%

of the decline in the race gap when all age groups are pooled together. A potential

explanation for this difference is that seniors were less likely to move in response

to CAA-induced changes in air quality than younger adults. Indeed, Section 4.2

provides evidence consistent with this hypothesis.

The second-to-last column in Table 1 shows that our point estimate for the effect

of regulation on the wealth gap in exposure is -0.24 µg/m3. This accounts for most

of the reduction between 2001-2003 and 2011-2013. Finally, our estimate of a near

zero effect of regulation on the health gap is unsurprising since the gap itself was

close to zero throughout the decade.

4.2 Effects on Clean Air Act Regulation on Migration

We use an instrumental variables estimator to measure the effect of changes in

air pollution exposure, caused by CAA regulation, on the probability of moving.
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Specifically, we instrument for the change in an individual’s exposure to PM2.5 using

an indicator for whether the individual lived in a nonattainment county when CAA

enforcement started in 2005. Instruments based on county nonattainment status are

used extensively in research on the economic consequences of air pollution exposure

(Aldy et al., 2022) and our implementation is similar to Bishop et al. (2023).

Equation (3) shows the second-stage regression, where the outcome, mit, is an

indicator for whether individual i moved to a new location in year t+ 1.

mit = βtyit + δjt + γtXit + f(basePMi; νt) + ξit (3)

We continue to use yit to measure the change in pollution experienced by an indi-

vidual between year t and the baseline period (2001-2003). The covariates include

CBSA dummies, a vector of individual characteristics that includes dummies for in-

teger age, gender, race, Medicaid take up, and whether the individual had ever been

diagnosed with one or more cardiopulmonary illnesses, and a fourth-order polyno-

mial function of baseline exposure during 2001-2003.

A threat to identifying β from OLS regression of (3) is that unobserved individual

characteristics that affect the probability of moving to a new location in year t+ 1

could be correlated with the change in PM2.5 exposure experienced between the

baseline period and year t. We address this threat by instrumenting for yit using an

indicator for nonattainment status of the county where the individual lived at the

time enforcement began in 2005, interacted with a fourth-order polynomial function

of basePMi:

yit = g(Zi, basePMi; πt) + δjt + ωtXit + f(basePMi; ηt) + ϵit, (4)

The validity of the IV estimator in (3)-(4) relies on the maintained assumption that

county nonattainment status, Zi, is independent of ξit conditional on the covariates.

Intuitively, β is identified by variation in PM2.5 exposures from 2006-2012 among

21



seniors of the same age, race, gender, Medicaid take-up and observed health, who

lived in the same CBSA and sorted themselves into neighborhoods with similar

baseline concentrations of PM2.5 prior to enforcement of the regulatory standard in

2005 but lived in areas that were regulated differently under the Clean Air Act. We

do not impose any restrictions on how the regression parameters evolve over time.

The t subscripts on regression parameters in Equations (3) and (4) reflect the fact

that we estimate those equations separately for each year from 2006 through 2012. In

addition, we repeat estimation of Equation (1) for each of the three subpopulations

that the EPA characterizes as being more sensitive to PM2.5 exposure (EPA, 2019).

Figure 4 summarizes our IV results. Each panel shows time-varying estimates

for the effect of CAA-induced changes in PM2.5 on the probability of moving, along

with 95% confidence bands.11 The vertical axes measure percentage point changes

in the migration probability. The results in each panel show precisely-estimated

near-zero effects of air pollution changes on migration.

These results imply that the EPA’s regulation of PM2.5 did not induce seniors to

move in general (Figure 4a). Nor did the regulation appear to cause subpopulations

that are thought to more vulnerable to pollution exposure to move out of areas that

experienced larger reductions in pollution (Figures 4b,4c,4d). The 95% confidence

bands allow us to rule out causal changes in migration greater than one percentage

point for all groups and years.

The lack of a migratory response is important for at least three reasons. First, it

implies that residential location choices made prior to age 65 have long-lasting effects

on pollution exposure. Second, it can explain why we find that CAA regulation

explained virtually all of the decline in the race gap among people over age 65

whereas Currie et al. (2023) and Sager and Singer (2025) find that it explains closer

to 60% when all age groups are pooled. Specifically, Currie et al. (2023) find that

race-based migration undid part of the causal decline in the race gap as White
11The instruments have adequate statistical power with Kleibergen-Paap rk Wald F-statistics

between 41 and 415. These results are shown in Appendix Table B.1
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(b) Black or African-American seniors
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(c) Senior Medicaid beneficiaries
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(d) Seniors with cardiopulmonary diseases

Figure 4: Estimated Effects of PM2.5 Exposure on the Probability of Moving

Note: The figure shows IV estimates for the effect of changes in air pollution exposure on the
probability of migration. 95% confidence bands are based on clustering standard errors at the
Census tract level.

(Black) population shares increased (decreased) the most in areas that had the

largest reductions in PM2.5. Our results suggest that this race-based sorting was

concentrated among people under age 65. Finally, the lack of a similar migratory

response among seniors implies that CAA regulation produced a relatively larger

reduction in the race gap in exposure for seniors, whom the EPA classifies as being

more vulnerable to air pollution based on age.

23



5 Effects of Superfund Cleanup on Migration

The trends in Superfund site exposure shown in Figures 1b–3b reflect the combined

effects of migration, compositional changes in the 65+ population, and remediation

activities. Of these three channels, migration is the primary channel for modifying

Superfund site exposure among a given cohort of seniors because, compared to

CAA regulation of PM2.5, the time from regulatory action to measurable changes

in exposure is relatively long for non-movers. Most seniors who live near newly

discovered Superfund sites will have died before those sites are deleted from the

NPL. For example, at the midpoint of our study period, the average individual is 70

years old with a remaining life expectancy of 14 years. In comparison, the median

time from proposal to deletion for sites proposed since 2000 is at least 15 years.12

Against this background, we estimate the extent to which the exposure trends

in Figures 1b–3b can be explained by seniors moving to reduce their exposure to

contaminated sites. Specifically, we estimate how proposal and deletion of sites af-

fects short-term migration. As we noted in Section 2.3, the EPA publicizes proposal

and deletion events through local news media and community advisory groups. By

proposing a site for the NPL, the EPA informs nearby residents that the site may

pose a significant risk to their health. By deleting a site, the EPA signals that it be-

lieves the risk is no longer significant. The heterogeneous timing of these events pro-

vides an opportunity to study how information shocks about environmental health

risks affect migration.

5.1 Spatial Difference-in-Differences Design

Figure 5 provides a stylized illustration of the spatial and temporal sources of vari-

ation that motivate our empirical design. We focus on “treatment” sites that the

EPA either proposed for the NPL between 2002 and 2011, or deleted from the NPL

during that period, and for which we observe individuals living within 9 kilometers
12This is a weak lower bound on remediation time because it relies on an extreme assumption

that all sites are fully remediated just after our study period. If we repeat the calculation including
sites proposed before 2000, the lower bound median cleanup time is 30 years.

24



of the treated site and no other site.13 The sets of proposed and deleted sites are

mutually exclusive; that is, all of the proposed sites that we examine were still on

the NPL at the end of 2013. We define the treatment window to be a subset of our

2000-2013 study period in order to utilize variation in migration within a five-year

window around the year each site was proposed or deleted. For a site that was pro-

posed in 2002, for example, we examine pre-trends in 2000 and 2001 and post-trends

in 2003 and 2004, whereas we examine trends from 2009-2013 for a site proposed in

2011.

Figure 5: Spatial Difference-in-Differences Design
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The concentric circles in Figure 5 illustrate the spatial delineation of treatment

and control areas. We define the treatment area, T , by a 3 kilometer radius around

each treated site. As we noted in Section 3.1, the 3 kilometer distance lies near
13These sample criteria drop 35 sites that were proposed in 2002-2011 and 9 sites that were

deleted in 2002-2011.

25



the middle of the range commonly used to estimate effects of hazardous waste and

other localized sources of land contamination on property values and the health of

nearby residents. The control area C1 is a donut defined by 6 and 9 kilometer rings

around the newly proposed or deleted site. We exclude the smaller 3k-to-6k donut

due to ambiguity around the fact that distances within this range are included as

part of the treatment group in some studies of health effects and property values

(e.g. Cassidy et al., 2022; Guignet et al., 2023; Persico et al., 2020) and as part of

the control group in others (e.g. Currie et al., 2011; Haninger et al., 2017; Klemick

et al., 2020; Guignet and Nolte, 2024). Variation in emigration from areas T and

C1 before and after a site is proposed or deleted can identify a spatial difference-

in-differences estimator for the effect of proposal or deletion on emigration from

surrounding neighborhoods.

The spatial difference-in-difference (DID) estimator embeds the maintained as-

sumption of common trends in emigration between areas T and C1. Our empirical

design provides two years of pre-trend data to test this assumption. As an addi-

tional sensitivity check we also estimate specifications that include data from control

areas C2 and C3 around sites that the EPA proposed (or deleted) after our study

period, specifically between 2014 and 2022. Adding these sites to the control group

allows for the possibility that emigration time trends differ with spatial proximity to

sites regardless of when those sites were proposed or deleted. This could occur, for

example, if the shares of single-family and multi-family housing units varied with

distance from sites and were differently affected by boom-bust cycles in the housing

market.

Thus, the estimation samples are comprised of seniors who lived in neighborhood

types T , C1, C2, and C3 each year and who did not live within 9 kilometers of

any other current or future site.14 We define the outcome of interest, mijt, as an

indicator for whether individual i who lived in neighborhood j at the beginning

of year t moved outside their neighborhood by the beginning of year t + 1. This
14Individuals may live within 9k of sites that had been remediated and removed from the NPL.
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definition treats within-neighborhood moves (e.g. moves within area T in Figure 5)

as being equivalent to not moving because both possibilities leave the individual’s

proximity to their nearest site approximately unchanged.

Equation (5) shows the basic spatial differences-in-differences regression.

mijt = β1Postjt + β2Tijt + β3Postjt × Tijt + αt + γj + δXit + ϵijt (5)

Tijt is an indicator for whether individual i lived within 3k of site j at the beginning

of year t, and Postjt is an indicator for whether t is the first or second year after

the EPA proposed adding that site to the NPL (or deleting it from the NPL).

We normalize Postjt = 0 for the year during which sites were proposed or deleted

because we do not observe the precise timing of moves relative to proposal/deletion

dates during the calendar year. The covariates include year fixed effects, αt, site

fixed effects, γj, and the following individual characteristics: indicators for integer

age, gender, race, receipt of Medicaid benefits, and past diagnosis of one or more

cardiopulmonary illnesses.

Thus, the coefficient of interest, β3, is identified by differences in emigration be-

tween treatment and control neighborhoods around sites before and after they were

proposed for the NPL conditional on time trends, site-specific effects, and the demo-

graphic compositions of neighborhood populations. Importantly, treatment occurs

at the same time for all individuals living around each site. This feature, combined

with the fact that sites do not transition back to untreated status during our esti-

mation window, makes our econometric framework similar to a stacked DID design,

which is one of several designs for data with staggered treatment windows (Roth et

al., 2023).15 We also estimate specifications that add time-varying treatment effects

and that interact treatment with individual characteristics.
15Guignet and Nolte (2024) provide another example of this approach in the context of hazardous

waste and home values.
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5.2 Effects of Superfund Site Proposal and Deletion on Emigration

Table 2 reports results from four specifications of Equation (5). Regression co-

efficients are multiplied by 100 and can therefore be interpreted as approximate

percentage point (pp) changes. The first two columns use data from near and far

neighborhoods around 135 sites that the EPA proposed adding to the NPL between

2002 and 2011 (i.e. neighborhoods T and C1 in Figure 5). Column (1) indicates

that new information about environmental contamination had virtually no effect on

the rates at which seniors moved out of surrounding neighborhoods.

Table 2: Effect of Site Proposal on Emigration

(1) (2) (3) (4)
proposal 0.007 0.039 0.006 0.037

(0.187) (0.247) (0.188) (0.247)
proposal interacted with:

-0.389 -0.388
(0.514) (0.512)
-0.568 -0.579
(0.580) (0.579)
0.127 0.133

(0.287) (0.287)

number of person-years 348,600 348,600 857,846 857,846
number of sites 135 135 208 208
includes future sites no no yes yes

Black or African-American

Medicaid recipient

Cardiopulmonary disease

Note: The outcome is an indicator for whether an individual moved out of their neighborhood.
Coefficients are multiplied by 100 and can therefore be interpreted as approximate percentage
point changes. Standard errors are clustered by site-year.

Column (2) shows results from a specification that interacts the information

treatment with indicators for whether a nearby resident is Black, a Medicaid re-

cipient, or previously diagnosed with a cardiopulmonary disease. The interaction

terms suggest that Black seniors and Medicaid recipients are slightly less likely to

move out of neighborhoods around newly proposed sites. However, these effects

are statistically indistinguishable from zero and 95% confidence intervals rule out

reductions greater than 1.8pp.
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Finally, the null effects shown in columns (1)-(2) of Table 2 persist in columns

(3)-(4) when we add data from near and far neighborhoods around 73 sites that

were proposed for the NPL after the end of our study period (i.e. neighborhoods C2

and C3 in Figure 5). These additional “control” sites were proposed between 2014

and 2022. The similarity in results suggests that the null effects reported in the first

two columns are not simply attenuated by differential trends in migration between

neighborhoods closer and further from hazardous waste sites that may differ in their

stock of housing.

Table 3: Effect of Site Deletion on Emigration

(1) (2) (3) (4)
deletion 0.354* 0.160 0.340 0.146

(0.211) (0.245) (0.212) (0.243)
deletion interacted with:

0.974 0.988
(0.703) (0.704)
-0.462 -0.481
(0.512) (0.512)
0.211 0.211

(0.320) (0.320)

number of person-years 266,024 266,024 450,752 450,752
number of sites 94 94 158 158
includes future sites no no yes yes

Black or African-American

Medicaid recipient

Cardiopulmonary disease

Note: The outcome is an indicator for whether an individual moved out of their neighborhood.
Coefficients are multiplied by 100 and can therefore be interpreted as approximate percentage
point changes. Standard errors are clustered by site-year.

Table 3 reports estimates for the effect of deleting a Superfund site from the

National Priority List on emigration from surrounding neighborhoods. The first

two columns use data from neighborhoods around 94 sites that were deleted between

2002 and 2011, and the last two columns add another 64 “control” sites that were

deleted between 2014 and 2022. The average effects in columns (1) and (3) imply

that during the first two full years after a site is deleted from the NPL, the probability

of moving out is approximately 0.35 percentage points higher. However, the 95%
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confidence intervals include zero. The interaction terms suggest a higher probability

of emigration for Black seniors and a lower probability for Medicaid recipients. While

these effects are imprecisely estimated, confidence intervals rule out effects larger

than 2.4pp in absolute magnitude.

Overall, the results in Tables 2 and 3 suggest that new information about ex-

posure to health risks from local sources of land contamination generates little to

no residential sorting response among incumbent over-65 populations living in the

affected areas.16 Their non-response parallels the nationwide evidence on the in-

sensitivity of migration to air quality changes in Section 4.2. This reinforces our

observation that earlier-in-life location choices have long-lasting consequences for

later-in-life pollution exposures. A remaining question is why the race and wealth

gaps in Superfund site exposure increased during the 2000’s (Figure 2b) while overall

exposure declined (Figure 1b). We find that immigration to Superfund site neigh-

borhoods can help to explain this pattern.

5.2.1 Immigration to Superfund Site Neighborhoods

We measure how the probability that movers choose to live near Superfund sites

varies with information, race, wealth, and health. The sample we use for this final

exercise is comprised of all individuals who we observe moving from locations that

are not within 9k of any Superfund site to new locations that are either less than

3k from the nearest site or 6k-to-9k from the nearest site. Given that these movers

choose to live within 9k of a site, we ask how the probability of living closer (0-to-

3k) or further (6k-to-9k) varies with mover demographics, before and after sites are

proposed for the NPL or deleted from it.

The first three columns of Table 4 show descriptive estimates from linear proba-
16Appendix B shows that this conclusion persists when we extend the econometric specification

in Equation (5) to allow for additional forms of treatment effect heterogeneity across time and
space. First, Appendix Figure B.1 provides visual evidence that there are no discernible pre-
trends or post-trends when we repeat estimation of the specification in column (1) of Tables 2
and 3 after interacting treatment with indicators for each of the two years before and after the
treatment year. Second, Appendix Table B.2 shows that we continue to find null effects when we
interact treatment with the Hazardous Ranking System score of site toxicity.
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Table 4: Immigration to Superfund Sites

(1) (2) (3) (4) (5)
5.162*** 1.917*** -0.280 -2.744 3.584
(1.076) (0.478) (1.041) (2.188) (2.902)
2.13*** 1.813*** 6.048*** 2.061 5.554**
(0.555) (0.275) (0.686) (1.294) (2.169)
0.040 0.404** 0.792** 0.590 1.75*

(0.505) (0.171) (0.355) (0.964) (0.963)
   0.849 3.441
   (1.751) (2.109)

proposal (or deletion) interacted with:
 2.726 2.621
 (2.495) (5.157)
 1.158 1.832
 (2.096) (2.853)
 -1.273 -1.914
 (1.702) (1.419)

number of person-years 22,715 152,545 56,402 8,653 7,074
number of sites 210 1,139 309 118 86

site type future 
proposed proposed deleted proposed deleted

Medicaid recipient

Cardiopulmonary disease

Black or African-American

Medicaid recipient

Cardiopulmonary disease

proposal (or deletion)

Black or African-American

Note: The outcome is an indicator for whether an individual moved to a new location within
3 kilometers from a Superfund site. The sample is comprised of individuals who moved from a
location that was at least 9 kilometers from the nearest Superfund site to a location that was either
within 3 kilometers of a site or between 6 kilometers and 9 kilometers from a site. Coefficients
are multiplied by 100 and can therefore be interpreted as approximate percentage point changes.
Standard errors are clustered by site-year.

bility regressions. The dependent variable is an indicator for whether the individual

moved within 3k of a site and the covariates include indicators for year, site, in-

teger age, gender, race, Medicaid take-up, and cardiopulmonary illness. The first

two columns show that Black seniors and those receiving Medicaid benefits are sig-

nificantly more likely to move near Superfund sites that were previously proposed

for the NPL, as well as sites that will be proposed in the future. For example,

column (1) implies that, conditional on moving within 9k of a site, Black seniors

are 5 percentage points more likely to move within 3k of the site. We also estimate

a relatively large 6pp differential for Medicaid recipients moving near deleted sites.
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Overall, the signs and relative magnitudes of the coefficients in columns (1) and (2)

suggest that immigration to Superfund neighborhoods contributes to the trends in

the race, wealth, and health gaps in exposure shown in Figure 2b.

The last two columns of Table 4 examine whether the demographic trends in im-

migration to Superfund neighborhoods change before and after proposal and deletion

events. Our econometric approach is a pooled event study design focused on five-year

windows around the years when sites were proposed or deleted. This specification

is equivalent to the spatial DID regression in Equation (5) with the restriction that

β2 = β3 = 0. While the relatively small mover sample reduces statistical precision

relative to our prior analysis of incumbent residents’ emigration patterns, we still

fail to reject the null hypothesis that new information about Superfund site pro-

posal and deletion has no effect on how seniors sort themselves across residential

neighborhoods.

6 Conclusion

This study examined how environmental regulation under the U.S. Superfund pro-

gram and Clean Air Act affected exposure to hazardous waste and fine particulate

air pollution among the over-65 population from 2000 through 2013. We found that

regulatory-induced changes in the spatial distribution of pollution did not substan-

tially change seniors’ residential sorting behavior. This implies that environmental

gentrification did not unravel the benefits of lower pollution exposure for seniors

living in areas improved by regulation.

We also showed that regulation caused seniors’ exposure to Superfund sites and

air pollution to decline substantially, as did differences in air pollution exposure by

race and wealth. Race and wealth gaps in exposure to hazardous waste sites grew,

partly due to differential rates of migration into neighborhoods around those sites.

However, we found that these differences were unaffected by EPA regulatory actions

that publicly identified new sites as potential health risks and publicly certified

other sites as having been cleaned. Finally, we showed that there was virtually no
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difference in pollution exposure between people with and without chronic diseases

that increase their sensitivity to air pollution.

Overall, these findings imply that residential location decisions made by younger

adults are likely to have long-lasting effects on their lifetime pollution exposure.

This underscores the need to advance research on the life cycle dynamics of residen-

tial sorting and pollution exposure (Bayer et al., 2016; Bishop and Murphy, 2019;

Kuminoff and Mathes, 2024; Mathes, 2024).
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Supplemental Appendix

A Background

Figure A.1 provides an example of a notice to the public that the EPA proposed

adding a site to the National Priority List.

Figure A.1: Example of a Superfund Site Proposal Notice
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B Additional Results

Table B.1 reports point estimates from an instrumental variables regression of mi-

gration on the change in residential exposure to PM2.5

Table B.1: Effects of PM2.5 Regulation on Migration

Group year sample     
size

point 
estimate

Kleibergen-
Paap rk 
Wald F 
statistic

2006 3,080,831 -0.19 -0.38 0.00 96.78
2007 2,900,742 0.00 -0.13 0.13 104.94
2008 2,730,307 0.06 -0.08 0.20 113.01
2009 2,561,116 0.04 -0.10 0.17 41.54
2010 2,393,948 0.04 -0.11 0.19 176.04
2011 2,231,022 0.02 -0.13 0.17 119.98
2012 2,071,106 -0.07 -0.23 0.09 99.31

2006 286,870 0.04 -0.61 0.69 235.80
2007 269,295 0.15 -0.18 0.48 284.66
2008 252,978 0.05 -0.27 0.36 342.31
2009 236,860 -0.25 -0.65 0.16 234.14
2010 221,270 -0.20 -0.58 0.17 397.86
2011 206,038 -0.47 -0.87 -0.08 414.51
2012 191,217 -0.45 -0.92 0.02 379.21

2006 363,151 0.05 -0.43 0.54 128.70
2007 345,492 -0.08 -0.40 0.23 130.85
2008 327,648 -0.16 -0.57 0.26 157.61
2009 308,094 0.02 -0.39 0.43 107.08
2010 295,283 -0.50 -0.96 -0.04 144.56
2011 280,479 -0.16 -0.66 0.34 185.66
2012 263,018 0.11 -0.35 0.58 130.71

2006 1,393,420 -0.13 -0.38 0.13 96.78
2007 1,375,993 -0.04 -0.20 0.13 131.81
2008 1,345,998 0.12 -0.08 0.32 126.83
2009 1,303,508 0.11 -0.08 0.30 44.95
2010 1,246,804 0.22 0.03 0.41 181.04
2011 1,185,164 0.15 -0.07 0.37 138.82
2012 1,118,248 0.02 -0.22 0.25 105.43

All seniors

Black or African 
American seniors

Senior Medicaid 
beneficiaries

Seniors with 
cardiopulmonary 

illnesses

confidence       
interval

Note: The outcome is an indicator for whether an individual moved. Coefficients are multiplied
by 100 and can therefore be interpreted as approximate percentage point changes. Standard errors
are clustered by county.

Figure B.1 shows time-to-treatment effects of proposal and deletion. The specifi-

cations used to generate the figures correspond to column (1) of Tables 2 and 3 after
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interacting the treatment dummy with indicators for the two years before and after

treatment. The treatment effect is normalized to zero in the year when treatment

occurs.
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Figure B.1: Time-to-Treatment Effects

Note: The figure shows Spatial DID estimates for time-varying treatment effects of Superfund site
proposal and deletion on the probability of emigration.
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Table B.2 shows results from repeating estimation of the specifications in columns

(1) and (3) of Tables 2 and 3 after adding an interaction between treatment and the

Superfund site’s Hazardous Ranking System score. Sample sizes are slightly smaller

than in Tables 2 and 3 becuase a small number of sites are missing data on HRS

score.

Table B.2: Proposal and Deletion Interacted with HRS Score

(1) (2) (3) (4)
0.075 -0.013  

(0.9934) (0.9971)  
proposal interacted with:

-0.0015 0.0002  
(0.0204) (0.0204)  

 0.1743 0.2550
 (0.8048) (0.8072)

deletion interacted with:   
 0.0011 -0.0011
 (0.0184) (0.0185)

number of person-years 338,375 799,893 255,226 434,134
number of sites 126 192 90 153

includes future sites no yes no yes

proposal

Hazard Ranking System Score

deletion

Hazard Ranking System Score

Note: The outcome is an indicator for whether an individual moved out of their neighborhood.
Coefficients are multiplied by 100 and can therefore be interpreted as approximate percentage
point changes. Standard errors are clustered by site-year.
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