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A New Approach to Computing Hedonic Equilibria and  

Investigating the Properties of Locational Sorting Models  

 

 
 
ABSTRACT

This paper outlines a new way to solve the traditional housing market assignment problem and 

uses it to investigate the properties of hedonic equilibria.  Our approach to computing equilibria 

is based on Rosen’s (1974) bid function.  It has four desirable features: (i) convergence implies a 

hedonic equilibrium; (ii) convergence is guaranteed if a hedonic equilibrium exists; (iii) it can 

solve for a new equilibrium following a shock to the market; and (iv) if multiple equilibria exist, 

it can identify them.  The algorithm is applied to micro data from San Joaquin County, 

California, where the choice of a home provides access to public schools in particular school 

districts.  First we calibrate the algorithm to approximately reproduce actual housing prices in 

San Joaquin County as a hedonic equilibrium.  Then we introduce a policy that improves school 

quality in selected school districts.  We find that there are several possibilities for the new 

equilibrium.  For each of these potential equilibria, we compare the marginal willingness to pay 

for school quality with the rate at which the improvement is capitalized into property values.  

The resulting capitalization rates differ substantially from marginal willingness to pay. 
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1.  Introduction 

The hedonic property value model is one of the most trusted methods for estimating what 

consumers are willing to pay for non-market goods and services.  Over the past 40 years, 

economists have used the model to measure the willingness to pay for a wide range of urban 

amenities including air quality (Ridker, 1967), water quality (Dornbusch and Barrager, 1973), 

earthquake risk (Brookshire et al., 1985), school quality (Black, 1999), and airport noise (Pope, 

2008a).  This line of research matters for public policy.  Hedonic estimates have served as a basis 

for litigation and have helped to inform the regulatory process (Palmquist and Smith, 2002).  The 

willingness of judges, juries, and regulators to trust the results from hedonic models makes it 

especially important for us to understand their capabilities and limitations.        

Recent advances in hedonic modeling have sought to improve our estimates for 

willingness to pay by tracking the way housing markets adjust to unexpected shocks.  Some 

studies have used quasi-experimental designs to identify the rates at which shocks to amenities 

are capitalized into property values (Chay and Greenstone, 2005; Davis, 2004; Linden and 

Rockoff, 2008; Pope, 2008a; Pope, 2008b).  Others have used structural models to predict how 

future shocks will affect migration patterns, capitalization rates, and consumer welfare (Sieg et 

al., 2004; Smith et al., 2004; Walsh, 2007).  Both of these approaches have raised new questions 

about the empirical properties of hedonic equilibria. 

A key issue for the structural models is the potential multiplicity of equilibria.  If there 

are several equilibria that may follow a shock to an amenity, how does one choose between 

them?  Will a researcher’s choice drive their predictions for welfare measures?  For the quasi-

experimental models, a key issue is the distinction between the capitalization rate for an amenity 

and the marginal willingness to pay (MWTP).  Hedonic theory predicts that the two measures 
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will generally differ, but it does not predict the size of the difference (Starrett, 1981; Bartik, 

1988).  Will the difference be small enough to treat the capitalization rate as an approximation to 

MWTP?  It is important to answer this question because there is considerable interest in using 

quasi-experimental methods for nonmarket valuation (Greenstone and Gayer, 2009).   

The difficulty with investigating the properties of hedonic equilibria is that, in general, 

there is no closed-form expression for the equilibrium price function.  We address this difficulty 

in the first half of the paper by outlining a simple way to compute equilibria numerically.  The 

second half of the paper applies the new algorithm to a particular set of micro housing data in 

order to investigate whether the hedonic equilibrium will be unique and whether the 

capitalization rate for an unexpected shock to an amenity will approximate MWTP. 

 Our approach to computing equilibria is rooted in hedonic theory.  We use Rosen’s 

(1974) bid function to develop an iterative bidding algorithm that solves for a vector of prices 

and an assignment of people to homes that jointly clear the market for housing.  The algorithm 

has four desirable properties: (i) convergence implies a hedonic equilibrium; (ii) convergence is 

guaranteed if a hedonic equilibrium exists; (iii) it can solve for a new equilibrium following a 

shock to the market; and (iv) if multiple equilibria exist, it can identify them.  In previous work 

on simulating hedonic equilibria, Cropper et al. (1988, 1993) and Banzhaf (2003) solved the 

housing market assignment problem using a linear programming algorithm developed by 

Wheaton (1974).  We compare both algorithms on a typical hedonic data set and find that the 

iterative bidding approach is faster, converges more reliably, and reduces the curse of 

dimensionality in the need for computer memory.  These features allow us to compute equilibria 

for data sets that are an order of magnitude larger than those used in previous studies. 

To investigate the potential multiplicity of equilibria, we apply the new algorithm to 
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housing data from San Joaquin County, California.  Households with heterogeneous preferences 

and incomes are assumed to derive utility from housing characteristics, public school quality, 

and other amenities.  We find that the data support several equilibria.  Equilibria associated with 

high utility have low prices, and those associated with low utility have high prices.  This result 

complements Bayer and Timmins (2005), who find that multiple equilibria can arise from social 

interactions in residential location choice.  In contrast, our results demonstrate that multiple 

equilibria can arise in a conventional hedonic model without social interactions.   

To investigate whether capitalization rates approximate MWTP, we first calibrate the 

model to approximately reproduce actual housing prices in San Joaquin County as a hedonic 

equilibrium.  Then we introduce a policy that improves school quality in selected school districts.  

While there are several possibilities for the new equilibrium, they imply similar capitalization 

rates.  Regardless of which equilibrium we choose, capitalization rates do not approximate 

MWTP.  They systematically overstate MWTP in the lowest quality school district and they 

systematically understate MWTP in the highest quality school district.  These differences arise 

from the way heterogeneous households sort themselves across the market in a hedonic 

equilibrium. 

The remainder of the paper is organized as follows.  Section two defines the urban 

landscape and formalizes the equilibrium conditions.  Section three outlines the iterative bidding 

algorithm and provides convergence proofs.  Section four summarizes the data and uses it to 

provide benchmarks on computational performance.  Sections five and six report our results on 

multiplicity and capitalization.  Finally, section seven concludes with suggestions for future 

research.  Matlab code for the algorithm and data to replicate our results are provided in a 

supplemental appendix.   
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2.  Characterizing a Locational Equilibrium 

Hedonic property value models begin from the following problem:  the availability of housing 

and public goods varies across an urban landscape and each household chooses to occupy the 

location in that landscape that provides its preferred bundle of goods, given its preferences, 

income, and the relative prices involved.  Every household pays for its location choice through 

the price of housing.  The problem can be formalized using the characteristics approach to 

consumer theory (Lancaster, 1966).  That is, the utility a household obtains from each location 

can be written as a function of the characteristics of that location.   

Let the urban landscape consist of J homes, each of which is defined by a vector of 

characteristics, jx , where Jj ,....,1= .  This includes structural characteristics of the home, such 

as the number of bedrooms, the number of bathrooms, square feet, and lot size, as well as local 

public goods and amenities, such as crime rates, school quality, air quality, and access to open 

space.  A household’s utility depends on the characteristics of housing and public goods at its 

location and on its consumption of a numeraire composite commodity, c.  Households are 

heterogeneous.  They differ in their income, y , and in their preferences, α .  Let the population 

of households be indexed from Ii ,....,1= , where JI = .  Then the utility obtained by household 

i at location j can be represented as: ( )ij cxU α,, .  Each household, i, is assumed to choose a 

specific house and a quantity of c that maximize its utility subject to a budget constraint: 

 ( ) jiijcj
pcytosubjectcxU +=α;,max

,
.             (1)  

In the budget constraint, the price of the numeraire is normalized to one, and jp  represents 

annualized expenditures on house j.   
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A locational equilibrium is achieved when every household occupies its utility-

maximizing location and nobody wants to move, given housing prices, housing characteristics, 

and the exogenous provision of local public goods.1

ijb

  In order to define this concept more 

formally, let  denote household i’s bid for the jth home, and let ijA  be an assignment indicator 

where 1=ijA  if and only if household i occupies home j.  Then a locational equilibrium must 

satisfy: 

 { } 1max == ijijiij Aiffbb ,                (2) 

∑∑ ==
j

ij
i

ij AA 1, for all i, j.              (3) 

In other words, each household occupies exactly one home, for which it has the maximum bid.   

In Rosen’s (1974) model of a hedonic equilibrium, bids are expressed as a function of 

housing characteristics and preferences.  To see this, let u~  be some reference level of utility, and 

consider an indifference surface over which x  and c vary, while u~  stays the same:  

( )α;,~ cxUu = .  Assuming utility is monotonically increasing in c, the function can be inverted 

to solve for c.  

( )α;~,1 uxUc −= .                (4) 

Inserting (4) into the budget constraint and rearranging terms allows a household’s maximum 

willingness-to-pay for a home to be expressed as a function of its characteristics and the 

household’s income, preferences, and reference utility: 

( )α;~,1 uxUyb −−= .               (5) 

This is Rosen’s (1974) bid function.  We can use it to solve for a locational equilibrium, given a 

                                                 
1 See Bayer and Timmins (2005, 2007) for a discussion of locational equilibria and the estimation of neighborhood 
choice models with endogenously determined public goods. 
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parametric specification for the utility function, information on preferences and income, and data 

on housing characteristics. 

  

3. Solving for a Locational Equilibrium 

We use Rosen’s bid function to solve for a vector of prices and a unique assignment of 

households to homes that jointly clear the market for housing.  This requires conducting a series 

of hypothetical second-price auctions for individual homes until subsequent bidding has no 

further effect on prices.  While the equilibrium conditions in (2)-(3) are not imposed on any 

individual step of this process, we demonstrate that convergence of the algorithm implies a 

locational equilibrium. 

 

3.1. The Iterative Bidding Algorithm (IBA) 

As in Wheaton (1974), the process of solving for a locational equilibrium begins by assigning 

each household i a reference level of utility, iu~ .  This can be used together with data on the 

distribution of housing characteristics and data on the joint distribution of income and 

preferences to solve for each household’s bid for each home.  The bids are then used to conduct a 

second-price auction for each property.   

Each auction requires the highest bidder to pay the second highest bid plus a marginal 

increment, 0ε > .  Consider an auction for the jth home.  It can be decomposed into three steps: 

i. Given jiii xyu ,,,~ α , solve for ( )iijiij uxUyb α;~,1−−=  for all i. 

ii. Rank the bids and set jp  equal to the second highest bid plus ε . 

iii. Update utility for k, the highest bidder: ( )kjkjk pyxUu α;,~ −= . 

Every household submits a bid and the highest bidder, k, is assigned to home j.  Assuming ties 
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for the highest bid occur with zero probability, household k will pay a price that is less than or 

equal to its bid, kjj bp ≤ .  Since utility is assumed to be monotonic in the numeraire, the new 

assignment must either increase k’s reference utility or leave it unchanged.  Monotonicity also 

implies that an increase in k’s reference utility will decrease its bid for every other home.  After 

solving for jp  and updating ku~ , we move on to auction the next home.   

The IBA continues running second-price auctions until the occupant of every home is 

paying an ε  above the second highest bid for that home.  The complete algorithm consists of 

four steps:  

Iterative Bidding Algorithm   (6) 

(6.a) Order all the houses in the market from 1 to J. 

(6.b) Define iii uy ~,,α  for each i. 

(6.c) Conduct an auction for each house and update utility for the highest bidder. 

1. Solve for 1p  and k, and update ( )kkk pyxUu α;,~
11 −= . 

2. Solve for 2p  and k, and update ( )kkk pyxUu α;,~
22 −= . 

. 

. 

. 
J. Solve for Jp  and k, and update ( )kJkJk pyxUu α;,~ −= . 

(6.d) If (6.c) did not change the price of any home, stop.  Otherwise repeat (6.c).   

 

The subscripts on Jpp ,...,1  in (6.c) refer to specific homes, whereas the k subscript on utility 

identifies the individual bidder who wins each auction.  In general, different individuals will win 

different auctions.  However, unlike the adaptation of Wheaton’s (1974) linear programming 

algorithm in Cropper et al. (1988, 1993) and Banzhaf (2003), the IBA does not constrain 

households to be uniquely assigned to homes on intermediate iterations of the algorithm.  More 

precisely, the equilibrium condition in (3) may be violated on an intermediate iteration of (6.c).  
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For example, the household who won the auction for home 1 in step 6.c.1 may have 

subsequently won the auction for home J on step 6.c.J.  In this case the decrease in Jp  that 

motivated the household to move from 1 to J will violate the convergence criterion in (6.d).  

Therefore, the algorithm will begin a new iteration of (6.c).  The IBA continues to iterate over 

(6.c) until the vector of housing prices converges, signaling the market has cleared.  Market 

clearing implies that, at the current vector of prices, no household can increase its utility by 

moving to a different home.   

Notice that the IBA systematically decreases housing prices.  Each auction either 

decreases the price of a home or leaves it unchanged.  The systematic nature of this process 

guides our choice for the initial reference level of utility.  Iuu ~,...,~
1  must be defined such that the 

vector of prices on the first iteration of the algorithm lies above the equilibrium.  Since prices 

always decrease, we must start the IBA at a point that lies above the equilibrium price vector if 

we hope to converge to it. 

If the IBA converges to a vector of prices, that vector must satisfy the conditions for a 

locational equilibrium.  Moreover, if a locational equilibrium exists, the algorithm is guaranteed 

to converge.2

 

  Before proving these propositions in section 3.3, we first present numerical and 

graphical examples of the algorithm to illustrate its mechanics and provide intuition for the 

subsequent proofs.     

3.2. Graphical and Numerical Illustrations of the IBA: A Three-Home Example 

Suppose utility can be represented by the Cobb-Douglas function in (7), so that household i’s bid 

                                                 
2 If no equilibrium exists, the algorithm will not converge.  The specification for utility in (1) is too general to prove 
that a locational equilibrium will exist at positive prices, or at all.  It is possible to prove existence if one is willing to 
impose additional restrictions on the structure of preferences and the stock of housing.  For examples, see Bayer and 
Timmins (2005), Epple and Romer (1991), or Ekeland (2008).             
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for the jth home can be expressed as (8). 

( ) ( )jiij xcU lnln α+= .  (7) 

( )[ ]jiiiij xuyb ln~exp α−−= .  (8) 

Now consider three households, A, B, and C, who bid on homes 1, 2, and 3.  Table 1A provides 

each household’s income and its utility from the characteristics of each home, ( )ji xlnα .  The 

households differ in how they rank homes 2 and 3, but they would all prefer to live in home 1.  

With this in mind, we define the initial reference level of utility as ( )1ln~ xu ii α= .  This is the 

point at which each household spends all but one dollar of its income on its favorite home.  Since 

the IBA decreases prices systematically, starting the algorithm at this point guarantees it will not 

converge to a nonsensical solution where housing expenditures exceed income. 

Table 1B tracks the adjustment process as the IBA searches for a locational equilibrium.    

The algorithm begins by conducting a second-price auction for home #1.  Each household bids 

its income less one dollar, reflecting our choice for iu~ .  The household with the highest bid, A, is 

assigned to live there.  It pays $64,500—the second highest bid plus ε , which is set to $1 in this 

example.  After updating A’s utility, household B is assigned to live in home #2 at a price of 

$56,118.  Then household B wins the auction for home #3 and pays $55,444.  This completes the 

first iteration of the algorithm.  Notice that the assignment of households to homes is not unique.   

 When we return to home #1 on the second iteration, household A remains the highest 

bidder.  However, the second highest bid ($64,353) has decreased because B’s utility has 

increased through its assignment on the first iteration.  A decrease in the second highest bid for 

home #1 causes its price to decrease.  The same is true for homes #2 and #3.  While the second 

iteration concludes with a unique assignment of households to homes, the vector of prices has 

not converged.  All three prices are lower than on the previous iteration.  Therefore, the auctions 
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continue until the price vector finally converges on the 14th iteration of the algorithm.  At this 

point, each household has the highest bid for the home they occupy, paying 1$=ε  above the 

next highest bid.  This is a numerical example of a locational equilibrium.              

We can use the numerical example in table 1B to depict the IBA graphically.  Since the 

utility function in (7) is monotonic in the numeraire, the bid for a particular home in (8) will be 

monotonically decreasing in the level of utility.  Tracing out how an individual household’s bids 

for each home vary with its level of utility allows us to define a locus of 321 ,, bbb  combinations 

in price space.  This locus of points forms a string.  Figure 1A graphs these “bid indifference 

strings” for each of the three households.  A single point on a string identifies a 321 ,, bbb  

combination at which the corresponding household’s utility is fixed.  In other words, the 

household would be exactly indifferent between the three homes if they were sold at these prices.  

The highest point on each string is defined by the bid triple that corresponds to the household’s 

initial reference level of utility.  For example, the string for household C ends at the point 

( 55443,56117,56999 321 === bbb ) which are its bids for the three homes on the first iteration 

of the IBA (table 1B).  As we move down a string toward the origin, bids decrease and utility 

increases.  Thus, the bid strings simply provide a graphical representation of household 

preferences in price space. 

The IBA systematically searches along the bid strings, from top to bottom, until it finds a 

locational equilibrium.  To follow the movement of the IBA, consider the hyperrectangle in 

figure 1B.  It is defined by a lower vertex at the origin and an upper vertex at the highest bid in 

each dimension.  We have left it transparent to illustrate that it contains the three bid strings.  

Every time the IBA decreases the price of a home, the upper vertex moves toward the origin.  

Graphically, one face of the hyperrectangle is pushed inward, toward the origin, on each step of 
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the IBA.  Figures 1C, 1D, and 1E illustrate the first iteration of this process.  First, figure 1C 

shrinks the hyperrectangle in the 1p  dimension until its face is only an ε  away from touching a 

second bid string.  The bid string that passes through this face belongs to household A, the 

highest bidder for home #1.  Figure 1D repeats this process, shrinking the hyperrectangle in the 

2p  dimension and assigning household B to home #2.  Household B is subsequently assigned to 

home #3 when figure 1E shrinks the hyperrectangle in the 3p  dimension.  This process continues 

until it is no longer possible to push any face of the hyperrectangle toward the origin without 

passing through a second household’s bid string.3

 Figure 1F illustrates convergence of the algorithm.  In this locational equilibrium, 

households A, B, and C are assigned to homes 1, 3, and 2, and the equilibrium price vector is 

defined by the upper vertex of the hyperrectangle.  The price each household pays for the home it 

occupies is an 

   

ε  above what the next highest bidder is willing to pay.  For example, household C 

occupies home #2.  The price it pays ($42,289) is one dollar above household A’s bid ($42,288) 

since 1$=ε .  Graphically, C’s bid string is the only one to pass through the face of the 

hyperrectangle in the 2p  dimension.  A’s bid string lies just inside the hyperrectangle, an ε  

away from the face.  A visual inspection of figure 1F reveals that we cannot shrink the 

hyperrectangle by more than ε  in any dimension without forcing two strings to pass through a 

single face.  This is the graphical representation of a locational equilibrium.       

 

3.3. Key Properties of the IBA 

Convergence of the IBA is guaranteed to satisfy the conditions for a locational equilibrium under 

our maintained assumptions that utility is increasing monotonically in the numeraire and that ties 

                                                 
3 The supplemental appendix includes Matlab code that creates a “movie” of the shrinking hyperrectangle. 
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for the highest bid do not occur.  We state this formally as proposition 1. 

  

Proposition 1.  If ( ) 0>′ cU  and ties for the highest bid occur with zero probability, there must 

be some sufficiently small 0>ε  such that convergence of the IBA to a vector of prices and an 

assignment of households to homes satisfies the conditions for a locational equilibrium. 

 

Proof.  A locational equilibrium occurs when equations (2) and (3) are satisfied simultaneously.  

Convergence of the IBA always implies (2).  Suppose the algorithm converges at a point that 

violates (3).  Then at least one household must be assigned to at least two homes.  Without loss 

of generality, let household i be assigned to homes j  and 1+j , with equilibrium prices *
jp   and 

*
1+jp .  Now consider the final auction for 1+j .  Having been previously assigned to j, household 

i’s bid is ( )[ ]iijijjiji pyxuxUyb αα , ,,~, *
1

1
1, −−= +

−
+ .  Since ties are assumed to occur with zero 

probability, the next highest bid must be lower and household i will be assigned to 1+j  and pay 

the price 1,
*

1 ++ ≤ jij bp .  If this condition holds with equality, replace ε  with 2ε  so that 

1,
*

1 ++ < jij bp .  Since utility is monotonic in the numeraire, ( ) ( )ijijijij pyxupyxu αα ,,~,,~ **
11 −>− ++ , 

which means household i is no longer willing to pay *
jp  for home j.  Therefore, the algorithm 

cannot converge at the point *
1

* , +jj pp .    ⁭   

 

 The same restrictions we use to guarantee that convergence of the IBA implies a 

locational equilibrium are also sufficient to guarantee that existence of a locational equilibrium 

implies convergence of the IBA.  Notice that proposition 1 implies the IBA cannot stop at any 
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point that lies above a unique equilibrium.  Proposition 2 shows that if the IBA starts at a point 

that lies above a unique equilibrium, it cannot bypass that equilibrium.   

 

Proposition 2.  If ( ) 0>′ cU  and a unique equilibrium price vector exists inside the 

hyperrectangle defined by a lower vertex at the origin and an upper vertex at the starting vector 

of housing prices, the IBA cannot bypass it. 

  

Proof.  Let *P  denote the unique vector of prices that defines a locational equilibrium.  In order 

to bypass *P , the IBA would have to move from a point P  to a point P  such that two 

conditions hold: 

(i)  jjj PPP ≤*,  for all Jj ,...,1= .     

(ii)  jjj PPP ≤< *  for exactly one j . 

Suppose the bypass occurs on the auction for the jth home.  Let ( )Pbj
2  denote the second highest 

bid for j, which depends on the current vector of prices.  Using this notation, we can rewrite the 

first inequality in (ii) as ( ) ( ) εε +<+ *22 PbPb jj , which implies (iii): 

(iii) ( ) ( )*22 PbPb jj < .   

From the definition of a locational equilibrium, ( ) **
jij PPb ≤  for all i.  Since jj PP ≤*  for all j, 

the monotonicity restriction implies ( ) ( )PbPb ijij ≤*  for all i.  This contradicts (iii).     ⁭   

 

Figure 1 can help to provide some intuition.  From a graphical perspective, proposition 2 

simply recognizes that in order to bypass an equilibrium, the IBA would have to push one face of 
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the hyperrectangle through at least two bid strings.  This would violate the algorithm’s 

adjustment criteria.  The same logic can be applied to a situation with multiple equilibria.  Put 

simply, the IBA cannot bypass any equilibrium.  However, with multiple equilibria the order in 

which the IBA iterates over homes may determine which of the equilibria it converges to.  To see 

this, partition the set of all possible equilibria into two sets, S and T, such that any price vector 

contained in S is strictly higher than every price vector contained in T and the price vectors 

contained in S are unordered.4

 

  Now consider the special case where S is a singleton.  In this 

case, it is fairly obvious that the algorithm will converge to the unique equilibrium price vector 

in S regardless of the order in which we iterate over homes.  We state this as a corollary to 

proposition 2. 

Corollary 1.  Let { }**pS = , where **p  is the highest equilibrium price vector.  The IBA will 

converge to **p . 

 

Proof.   Let 0p  denote the IBA starting value, where **0
jj pp ≥  for all j.  Moving from 0p  to a 

point below **p  requires passing through the equilibrium point **p .  This possibility is ruled out 

by proposition 2.     ⁭  

 

In the more general case where S is not a singleton, the algorithm will converge to one of 

the equilibrium points in S.  Which of these equilibria it converges to may depend on the order in 

which we iterate over homes.  While it is difficult to develop a general proof for this situation, it 

                                                 
4 This refers to the usual vector ordering where two price vectors 1p  and 2p  are unordered if 21

jj pp >  and 21
kk pp <  

for at least one kj,  pair with kj ≠ . 
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is certainly possible to experiment in the context of a simulation.  Alternatively, if one is willing 

to impose specific restrictions on the structure of preferences and the stock of housing, it is 

possible to guarantee uniqueness or to restrict the set of possible equilibria (Ekeland, 2008).    

 

3.4. Discussion 

We have demonstrated that the iterative bidding algorithm allows us to solve for a vector of 

hedonic prices and an assignment of people to homes that jointly define a locational equilibrium.  

Our approach avoids the need to impose the equilibrium assignment condition on each step of 

the algorithm.  Nevertheless, under the twin assumptions that utility is monotonic in the 

numeraire and that ties for the highest bid do not occur, we can guarantee that convergence of the 

IBA implies a locational equilibrium and that existence of a locational equilibrium guarantees 

convergence of the IBA.  These assumptions deserve some additional discussion.    

The assumption that ties for the highest bid occur with zero probability implies that there 

must be a minimal degree of heterogeneity among houses and households.  No two households 

can be identical in their incomes, preferences, and initial reference utilities.  Since identical 

households would always have identical bids, they would eventually share the highest bid for a 

home.  Likewise, no two homes can provide identical bundles of characteristics.  In a locational 

equilibrium, identical homes must have identical prices.  A household assigned to one of these 

homes would obtain the same utility from its twin and the occupants of both homes would have 

identical bids for each.   

A model in which no two homes are identical would be consistent with an urban 

landscape in which space matters.  If spatially delineated amenities are conveyed through the 

location of a home, it seems reasonable to assume that households will perceive each home as 
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being unique.  This is consistent with the empirical hedonic literature.  Homes with identical 

structural characteristics tend to be priced differently according to their proximity to urban and 

environmental amenities such as air quality (Chay and Greenstone, 2005), school quality (Black, 

1999), crime (Linden and Rockoff, 2008; Pope, 2008b), and airport noise (Pope, 2008a).  

Furthermore, the assumption that houses and households are unique is consistent with the 

continuity assumptions that underlie Rosen’s (1974) theoretical model of a hedonic equilibrium.  

While we conjecture that the IBA could be extended to include decision rules that would allow 

us to solve for a locational equilibrium in which a subset of the houses and households are 

identical, there is little to gain from doing so since our current framework only requires that each 

pair of houses and households differ marginally.   

The assumption that utility is monotonically increasing in the numeraire is more 

fundamental to the mechanics of the IBA.  Monotonicity is what guarantees prices decrease as 

the algorithm iterates over auctions for each home, and it also underlies our proofs of 

convergence.  These results come at little cost.  Since monotonicity is one of the maintained 

assumptions of Rosen’s model, the mechanics of the IBA are consistent with hedonic theory.     

While it is reassuring to know that the IBA will converge to a hedonic equilibrium, if one 

exists, our proofs do not provide any insight into the computational burden of the algorithm or its 

convergence speed.  The next section provides some evidence on these practical considerations.  

 

4. Calibrating the IBA and Evaluating its Performance 

4.1. The Urban Landscape: San Joaquin County, California 

Located in the middle of California’s central valley, San Joaquin is one of the largest agricultural 

counties in the nation, with annual production value well over a billion dollars.  Three quarters of 
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its 564,000 residents live in seven cities: Escalon, Lathrop, Lodi, Manteca, Ripon, Stockton, and 

Tracy.  Their locations are traced out by the density of census tracts and the locations of recent 

housing sales shown on the map in figure 2.  Nearly all of the white space on the map is 

farmland.  Production agriculture accounts for over 80% of the land use in the county, 

surrounding and dividing the seven cities.  This landscape evokes the “city surrounded by 

farmland” metaphor Starrett (1981) used to motivate his conceptual model of how public goods 

are capitalized into housing prices.   

To provide a representation of San Joaquin’s urban housing market that is consistent with 

the empirical hedonic literature, we assume that homebuyers care about the structural 

characteristics of their homes, the demographic composition of their neighborhoods, and their 

proximity to spatially delineated public goods and amenities.  Table 2 reports summary statistics 

for the variables we use to create this landscape.  Data on the price and structural characteristics 

of 9,634 homes sold in the county between 1995 and 1998 were purchased from a commercial 

vendor.5  Each of these homes is differentiated by the following structural characteristics: 

number of bedrooms, age, building size, and lot size.  We define neighborhoods as Census tracts 

and attach data on three attributes from each tract to the homes they contain: mean time-to-work, 

median household income, and share of the population under 18.6

                                                 
5 The summary statistics in table 2 are based on the original transactions data.  After preparing table 2, we added a 
random shock to the price and structural characteristics of each home in order to create a “fake” data set that we can 
distribute without violating contractual obligations to the vendor.  See the appendix for details. 

  GIS data from the California 

Farmland Mapping and Monitoring Program were used to develop two proxy measures of land 

use near each home: distance to the nearest grazing land and distance to the nearest water body.  

While these measures are admittedly crude, both are statistically significant and economically 

6 For simplicity, our simulations treat the demographic characteristics of communities as fixed.  This approximates a 
situation in which only a small fraction of households are mobile.  Recent research has illustrated how neighborhood 
demographics may be determined as outcomes of a sorting process across communities (see, for example, Bayer and 
Timmins, 2005).  Integrating this form of endogeneity into the IBA would be an interesting topic for further 
research.  
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important in a simple linear regression of housing prices on housing characteristics and urban 

amenities.  The last two columns of table 2 report these results.  All else constant, homes closer 

to grazing land tend to be more expensive, while those closer to water bodies tend to be less 

expensive.  We hypothesize that because grazing land is located in the foothills of the county, it 

provides relatively scenic views and closer access to opportunities for outdoor recreation.  

Meanwhile, the main water body in the county is a series of tributaries from the Sacramento 

Delta that pose a flood risk for nearby residents in wet years.    

With few exceptions, students in San Joaquin County are required to attend schools 

located within the geographic boundaries of the school district in which they live.  This 

assignment creates a link between the choice of a home and public school quality.7  Keeping this 

in mind, we develop a proxy measure for school quality that we assign uniformly to homes 

within each district.  Specifically, we use 10th grade math score in 1998, reported by the 

Standardized Testing and Reporting (STAR) program.8

Finally, because housing expenditures are defined as an annualized measure in the 

hedonic bid function, the price data were converted into rents using the formula suggested by 

Poterba (1992).  Specifically, the relationship between the sale price of a home (P) and its 

annualized user cost (R) can be expressed as (9):  

  Then we convert the average score for 

each district into its corresponding percentile in the distribution of all California school districts.  

San Joaquin’s seven school districts range from the 54th percentile to the 80th percentile in the 

statewide distribution of school districts, ranked by STAR math score.      

( )( )[ ]PmriR p πδττ −+++−−= 1 .   (9) 

                                                 
7 A series of empirical studies have exploited the spatial discontinuities associated with school district boundaries to 
measure the extent to which school quality is capitalized into housing prices.  This work begins with Black (1999). 
8 These data are available from the California Department of Education. 
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The marginal tax rate (τ ) was based on the U.S. average (23%); California’s Proposition 13 

fixes the annual property tax rate ( pτ ) at 1%; and the 7% interest rate ( i ) represents an annual 

average of the 30-year fixed rate mortgage as reported by the Federal Home Loan Mortgage 

Corporation from 1995 to 2005.  The annual risk premium ( %4=r ), maintenance rate ( %2=m ), 

and depreciation rate ( %2=δ ) were all set to Poterba’s suggested values.  Finally, the land 

appreciation rate ( %5=π ) was calculated as the annual average inflation rate for the consumer 

price index of housing in the San Francisco Consolidated Metropolitan Statistical Area from 

1995 to 2005, as reported by the Bureau of Labor Statistics.9

 

  The resulting formula implies the 

annual rental rate for housing equals 9.17% of its price.                   

4.2. The Specification for Utility and Performance Benchmarks 

Given a definition for the stock of housing and the joint distribution of income and preferences, 

we can use the IBA to solve for a hedonic price vector that defines a locational equilibrium.  In 

our simulations, the joint distribution of income and preferences is based on the Cobb-Douglas 

specification for utility in (10): 

( ) ( )jiij xcU lnln α+= ,  where   ( )iii yαωα ~= ,   and   ( )βδα ,~~ Γ . (10) 

A vector of scaling parameters, ω , recognizes that relative preferences may vary systematically 

over the ten different housing characteristics.10 α~  Dividing  by income implies negative 

correlation between income and the overall strength of preferences for housing relative to all 

other goods.  While negative correlation is not required by the IBA, we find that it improves our 

                                                 
9 San Joaquin County is adjacent to the San Francisco Consolidated Metropolitan Statistical Area and approximately 
16% of its working residents commute to work in the Bay Area. 
10 This “horizontal” specification for preferences is consistent with the more general depictions of preference 
heterogeneity in the literature on structural estimation of locational sorting models (e.g. Bajari and Kahn, 2005; 
Bayer and Timmins, 2007).  
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ability to fit the model to the San Joaquin data.  Previous studies have also found that negative 

correlation between income and preferences helps to explain why households are less than 

perfectly stratified across residential communities by income (Epple and Sieg, 1999; Sieg et al., 

2004).  Finally, to draw from the joint distribution of income and preferences, we use (10) to 

combine a random draw from ( )βδ ,Γ  with an independent random draw on y  from the 

distribution of household income provided in the 2000 Census of Population and Housing.11

While the Cobb-Douglas specification for the utility function is somewhat rigid, the 

gamma distribution of preferences is sufficiently flexible to allow us to approximately reproduce 

the pattern of housing prices in San Joaquin County.  This was done by using the Nelder-Mead 

algorithm to solve for the 12x1 vector [

         

ω δ β ] that minimizes the distance between the 

predicted and observed distributions of housing prices.12  Figure 3 contrasts the difference 

between these distributions for two different sample sizes: 200 and 2000.  The solid line in panel 

A represents the empirical cumulative distribution function of actual prices for 200 homes in San 

Joaquin.13

                                                 
11 The Census distribution reports the number of households in each of 16 income bins.  The lowest bin (y<$5,000) 
was dropped under the assumption that households in this category are retired or purchasing housing out of savings.  
The highest bin (y>$200,000) was truncated at $300,000. 

  The dashed line represents the equilibrium prices assigned to those homes in our 

simulation.  While the predicted prices for some homes differ considerably from their actual 

values, the simulation reflects the general price trend in our data.  This is reinforced by the close 

match between the corresponding simulated and empirical probability density functions in panel 

B.  Panels C and D illustrate that these results do not change much when we increase the sample 

size to 2000.  Overall, our simulated equilibria appear to provide a reasonable approximation to 

12 An alternate version of the simulation used independent draws from 10 gamma distributions with different shape 
and scale parameters.  This specification was abandoned because it greatly increased computational time without 
substantially improving model fit.  
13 Recall that these are annualized housing prices.  Converting them back to actual housing prices would require 
multiplying by 1/.0917. 
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the housing market in San Joaquin County.    

 Table 3 summarizes how the equilibrium distribution of hedonic prices varies with the 

number of homes in the simulation.  Each row of the table presents means and standard 

deviations of the results from 30 Monte Carlo replications.  Increasing the sample size has little 

impact on the distribution of equilibrium prices.  The mean, standard deviation, and interquartile 

range are virtually unchanged as the simulated market size increases from 200 to 2000.  The 

main difference occurs at the right tail of the distribution.  This is because the prevalence of 

extreme draws from the joint distribution of income and preferences increases with the sample 

size.  A small number of households with high incomes and strong preferences for housing, 

relative to the numeraire, bid up the prices of the largest homes.  The impact of these extreme 

values is reflected in the difference between the actual and predicted skewness and kurtosis.         

 From a computational perspective, the IBA has three desirable features.  First, the 

algorithm is quite simple.  Looping over the iterative bidding process in (6.c) requires only 15 

lines of code, given the specification for utility in (10).  Second, the algorithm does not require 

working with large matrices.  The iterative process in (6.c) requires calculating an Nx1 vector of 

bids.  In comparison, the linear programming approach used by Cropper et al. (1988, 1993) and 

Banzhaf (2003) requires iterating over a series of NxN matrices.  With two thousand homes, 

these matrices exceed Matlab’s memory capacity on a computer running a 32-bit version of 

Windows.  Finally, the IBA is fast.  With 200 homes, the average Monte Carlo replication 

requires 531 iterations of (6.c), which takes 5 seconds.  Naturally, increasing the number of 

homes increases computational time.  Increasing the size of the market by an order of magnitude 

(from 200 homes to 2000) increases the average computational time from 5 seconds to 17 

minutes.  While the number of iterations increases linearly, the number of calculations increases 
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exponentially due to the need to calculate the Nx1 bid vector on each step of every iteration of 

the algorithm.  In larger markets, where computational time may pose a constraint, one could 

modify the algorithm to avoid redundant calculations, such as the bids made by households with 

incomes below the current sale price of the home.   

For comparison, the last column of table 3 reports the convergence speed of the linear 

programming algorithm (LPA) for sample sizes of 200, 500, and 1,000.  We found that good 

starting values were needed to guarantee convergence.  Therefore, starting values were defined 

by adding a small shock to the equilibrium utilities identified by the IBA.14

Finally, it is worth noting that we have found the IBA to perform consistently on other 

problems.  We have calibrated the IBA to different data sets, increased the sample size to as 

many as 10,000 homes, and solved for equilibria using Translog and Diewert utility functions.  

Throughout this process, we have observed similar performance in terms of computational time 

and have not had any difficulty obtaining convergence.    

  This ensured that 

both algorithms converged to virtually the same set of prices.  We would expect that starting the 

LPA near an equilibrium would reduce computational time.  Nevertheless, the IBA is still 

considerably faster.  With 200 homes, the average Monte Carlo replication of the LPA takes 36 

second to converge—seven times as long as the IBA.  The relative performance of the IBA 

improves with the size of the simulation.  In samples of 1000 homes, the LPA takes more than 

forty times as long to converge.   

 

5.  Identifying a Multiplicity of Hedonic Equilibria   

The IBA provides a simple way to investigate whether there are multiple hedonic equilibria.  

                                                 
14 The LPA systematically increases housing prices as it iterates over a series of assignment problems, each of which 
is formulated as a linear program.  We used Matlab’s linear programming solver and our code follows the 
formulation of the primal and dual problems outlined in Banzhaf (2003).    
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Recall from the corollary to proposition 2 that the IBA will converge to the highest equilibrium 

price vector located below the point at which the algorithm begins.  Therefore, by systematically 

varying the algorithm’s starting value, one can determine whether the data support multiple 

equilibria.   

To test whether the San Joaquin data support multiple equilibria, we fixed the draws on 

households and homes and varied the algorithm’s starting value.  We began from the highest 

point in price space that satisfies each consumer’s budget constraint.  Then, after solving for an 

initial equilibrium, we increased each household’s reference utility and solved for a new 

equilibrium.  Increasing the reference utility decreases the IBA’s starting value in price space, 

allowing us to test whether the data support equilibria at lower prices.  Repeating this process 

over a wide range of starting values confirmed that the data do support multiple equilibria. 

   Figure 4 depicts the set of equilibria in a sample of 100 homes.  It illustrates how the 

equilibrium prices that we recovered for two particular homes (#2 and #13) vary with the IBA’s 

starting value.  The horizontal axis measures the share of income spent on housing at the initial 

reference level of utility.  The vertical axis measures the price of housing in the resulting 

equilibrium.  We began by defining reference utility such that each household spends 99% of its 

income on its least favorite home.  This produced an equilibrium at the prices ( 011,11$13 =p , 

373,10$2 =p ).  Then we decreased the share of income spent on housing in the reference 

consumption bundle to 98%.  This allowed us to identify a lower equilibrium at prices 

( 599,10$13 =p , 910,9$2 =p ).  Equilibrium prices were unchanged when we continued to 

incrementally decrease the income share to 85%.  However, decreasing it to 84% revealed a third 

equilibrium at prices ( 328,10$13 =p , 711,9$2 =p ) where we remain until the share drops 

below 80%.  Continuing this process until the income share reached 1% identified 23 different 
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equilibria.15

 The pattern of results in figure 4 is representative of the entire sample.  That is, all 100 

homes had step functions similar to the ones shown for #2 and #13.  While housing prices vary 

systematically across the equilibria, housing assignments typically remain the same.  The 

average household was assigned to 1.8 different homes in the 23 different equilibria.  Finally, 

while increasing the sample size did not affect the overall pattern of results, it did increase the 

number of equilibria.  When we repeated the analysis for a sample of 1000 homes, we identified 

85 equilibria.  This seems intuitive.  As the sample size increases linearly, the number of ways 

that we can order households over homes increases exponentially, giving us more potential 

assignments to satisfy the equilibrium conditions.  

     

Our confirmation of multiplicity adds to previous findings by Bayer and Timmins (2005), 

who demonstrate that social interactions can lead to multiple equilibria when the household’s 

location choice problem is defined in probabilistic terms.  In contrast, our results demonstrate 

that multiplicity can arise in a deterministic setting without social interactions.  With the 

evidence from both studies pointing to a multiplicity of equilibria, models of household location 

choice that aim to predict how markets will respond to future shocks have at least three options: 

(i) demonstrate the new equilibrium is unique; (ii) justify a particular equilibrium; or (iii) 

evaluate the sensitivity of policy implications to the set of potential equilibria.  We return to this 

choice below in the context of our prediction for the rate that an unexpected shock to school 

quality will be capitalized into property values.  

   

6. The Difference between Capitalization and MWTP in the San Joaquin Model 

                                                 
15 Randomly varying the order in which we iterate over homes had no effect on these results, suggesting that the 
equilibria follow a vector ordering. 
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Over the past few years, researchers have increasingly adapted the hedonic property value model 

to a quasi-experimental framework.  Recent applications have used this strategy to investigate 

how housing prices react to unexpected shocks in urban amenities such as leukemia risk (Davis, 

2004), air quality (Chay and Greenstone, 2005), information about airport noise (Pope, 2008a), 

and the presence of registered sex offenders (Linden and Rockoff, 2008; Pope, 2008b).  These 

studies demonstrate that unexpected shocks to amenities cause housing prices to change.  It is 

less clear what the resulting capitalization rates reveal about willingness to pay.   

Some quasi-experimental studies make welfare calculations that effectively treat the 

capitalization rate as an approximation to MWTP (Davis, 2004; Chay and Greenstone, 2005; 

Linden and Rockoff, 2008).  This interpretation is valid as long as households are identical and 

the shock to the amenity is marginal.  However, if people are heterogeneous or the shock to the 

amenity is large then the theoretical equivalence between capitalization and welfare breaks down 

(Starrett, 1981; Bartik, 1988).  In this case the sorting process that underlies hedonic equilibria 

can generate capitalization rates that understate or overstate MWTP.  It is important to 

investigate the size of this difference given the current interest in using quasi-experimental 

methods for benefit-cost analysis (Greenstone and Gayer, 2009).   

The remainder of this section uses the calibrated San Joaquin model to investigate the 

size of the difference between the MWTP for school quality and the rate at which an unexpected 

improvement is capitalized into property values.  We shock the level of school quality in 

individual school districts, solve for new hedonic equilibria, and compare the resulting 

capitalization rates with the average ex-ante MWTP for the households who were “treated” by 

the shock.16

                                                 
16 To calculate an exact welfare measure for the change in school quality, one would need to account for changes in 
housing prices and household location choices, as in Sieg et al. (2004) and Smith et al. (2004).  The IBA provides 
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The multiplicity of potential post-shock equilibria is addressed by conducting a 

sensitivity analysis on the subset of equilibria that we judge to be plausible.  First, we limit our 

analysis to equilibria in which the average price of housing in the improved school district 

increases.  It seems reasonable to rule out a decrease in property values because the marginal 

utility from school quality is defined to be strictly positive.  This restriction defines a lower 

bound on the new equilibrium prices.  Then, following the logic in Bartik (1988), we define an 

upper bound at the point where the price of each home in the improved district increases by the 

maximum ex-ante willingness to pay of any household in the county.  While these bounds 

restrict our analysis to a subset of equilibria that we believe to be plausible, we do not have a 

simple way to choose between them.  Therefore, we calculate the capitalization rate for each of 

the plausible equilibria and report the minimum and maximum.  These are interpreted as bounds 

on the range of consistent predictions for market capitalization. 

Table 4 summarizes how households sort themselves across the urban landscape in the 

initial hedonic equilibrium that we calibrated to the San Joaquin data.  For each of the seven 

school districts in figure 2, the table reports average values for the rental rate, household income, 

preferences for school quality, and the annualized willingness-to-pay for a marginal 

improvement in school quality.  Not surprisingly, wealthier households tend to occupy more 

expensive homes.  The two most expensive districts (Escalon and Tracy) have the highest 

average income, and the lowest income households tend to live in the least expensive district 

(Stockton).  Yet the relationship between average income and the average rental rate is not 

strictly monotonic.  Households in Lodi have lower average income and pay higher average rent 

than households in Manteca, for example.  This reflects variation in the stock of housing within 

                                                                                                                                                             
the information needed to make these calculations.  Comparing the total market capitalization of a shock with exact 
welfare measures would be an interesting topic for future research on using hedonic models for policy evaluation.  
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each school district together with negative correlation between income and preferences for 

housing characteristics.17

Table 5 compares the ex-ante MWTP for school quality with the market capitalization 

rate for two hypothetical policies that lead to 15-quantile increases for individual school districts.  

The first policy raises school quality in the district with the lowest initial test scores (Stockton) 

from the 54th quantile in the statewide distribution of test scores to the 69th quantile, holding 

school quality constant in all other districts.  The second policy increases school quality in the 

district with the highest initial scores (Manteca), raising it from the 80th quantile to the 95th 

quantile while school quality is held constant everywhere else.  After each policy experiment, the 

IBA is used to recover the set of plausible hedonic equilibria.  For each of these equilibria, the 

capitalization rate is measured as (11), where D denotes the school district that experienced the 

improvement, q measures the school quality quantile, and the 0 and 1 superscripts distinguish 

between the pre-shock and post-shock equilibrium prices.   

  Finally, notice that households with the strongest preferences for 

school quality tend to locate in the districts with the highest quality schools (Manteca and 

Lincoln).  These households also tend to have the highest annualized MWTP. 

( ) ( ) ( )010101
DDjjDjjjDj
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. (11) 

This is simply the difference between the average price changes that occur in the improved and 

unimproved areas, measured per unit of the improvement.  Each row of table 5 reports the means 

and standard deviations of (11) from 30 Monte Carlo replications of each policy experiment, 

given a particular number of homes.  As in earlier simulations, increasing the market size from 

                                                 
17 The average home in Lodi is larger (measured by sqft and lot size) and requires a shorter commute than the 
average home in Manteca.  As a result, households who locate in Lodi tend to have stronger preferences for these 
characteristics than households in Manteca.  At the same time, because of the negative correlation between 
preferences and income, the households in Manteca tend to have slightly higher incomes.  These higher income 
households do not bid up the rental rates in Lodi because they prefer to live in Manteca. 
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200 homes to 2000 homes induces small changes in the mean capitalization rates and large 

decreases in their standard deviations. 

 While there are many plausible choices for the new equilibrium, they make similar 

predictions for the capitalization rate.  For example, with a sample size of 200, our range of 

predictions for the rate at which an improvement to Stockton is capitalized into property values 

has an average lower bound of $12.36 and an average upper bound of $13.34.  Figure 4 provides 

intuition for why this range is narrow.  Large differences in absolute prices across the various 

equilibria correspond to small differences in relative prices because equilibrium prices tend to 

move together.  Intuitively, when an improvement in Stockton’s schools make it more attractive 

relative to other districts, equilibrium housing prices in Stockton will tend to increase relative to 

equilibrium prices in other districts, regardless of which equilibrium we choose. 

  The results from the improvement to Stockton illustrate the difficulty in equating 

capitalization rates with MWTP when the capitalization reflects a non-marginal shock and 

households have heterogeneous preferences and incomes.  Stockton has the lowest initial test 

scores and the households who have chosen to live there have the lowest MWTP for an 

improvement (table 4).  When Stockton’s school quality improves, some residents from other 

districts would prefer to move there.  Importantly, these are not the individuals with the strongest 

preferences for school quality.  Stockton still has the lowest test scores of any district.  The 

households who want to move there tend to have below average preferences for school quality.  

Nevertheless, because many of them are willing to pay more than Stockton’s initial population, 

they bid up housing prices.  In the largest version of the simulation (N=2000), the improvement 

is capitalized into housing prices at an annualized rate of $11.40 to $11.56 per 1-quantile 

increase in school quality.  These capitalization rates are 22% to 24% higher than the annualized 
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MWTP for Stockton’s initial residents ($9.35).  Meanwhile, the range of values for the 

capitalization rate is 26% to 27% below the MWTP for the average resident in San Joaquin 

County ($15.65).  The bottom line is that the sorting behavior needed to clear the market 

following a shock causes the market capitalization rate to overstate average MWTP for the 

“treated” households and understate average MWTP for the population as a whole.  These 

differences are substantial.    

The pattern of results is reversed when there is an improvement to school quality in 

Manteca—the district with the highest initial test scores.  While residents of Lincoln, Lodi, 

Stockton, Escalon, Ripon, and Tracy bid up housing prices in Manteca, the resulting 

capitalization rate reported in the last row of table 5 ($16.87 to $18.30) is still 13% to 20% below 

average MWTP for Manteca residents ($21.01).  Meanwhile, the capitalization rate is 8% to 17% 

higher than the average MWTP in the county.  This is because the households who are interested 

in moving to Manteca after the improvement tend to value school quality more than San 

Joaquin’s average resident.         

 In their theoretical models of the capitalization process, Starrett (1981) and Bartik (1988) 

demonstrate that there are limits to what we can learn about how much households are willing to 

pay for an amenity from analyzing data on the rate that changes in that amenity are capitalized 

into housing prices.  Our simulations demonstrate that this theoretical point can be empirically 

important for property value studies that use quasi-experiments to assess the value of urban 

amenities.   

 

5. Conclusions and Future Research 

For more then 40 years, economists have used hedonic models to measure the values that 
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homebuyers implicitly assign to urban amenities.  Given the importance of this work for public 

policy, there has been surprisingly little effort to validate the resulting predictions.  We have 

provided the means to address this gap in the literature by developing an iterative bidding 

algorithm for computing hedonic equilibria.  The algorithm can be calibrated to approximately 

reproduce the actual prices in a large micro dataset as a hedonic equilibrium.   

Our application of the model revealed three important points about the empirical 

properties of hedonic equilibria.  First, there can be multiple equilibria in a conventional hedonic 

model without social interactions.  Second, the rate at which an unexpected shock to an amenity 

is capitalized into property values can differ substantially from average MWTP.  Finally, the 

existence of multiple equilibria need not limit the robustness of prediction.  Our results on the 

difference between capitalization and MWTP are robust to the choice of a new equilibrium.  That 

said, we must also stress that our results do not prove there will always be multiple equilibria or 

that capitalization rates will never approximate MWTP.  Our results are conditioned by the 

features of our model.  This includes the size of the shock being considered, the definition for the 

spatial landscape, the preference specification, and the standard assumptions of free mobility and 

perfect information.  Future research on multiplicity and capitalization could use the IBA to 

investigate the properties of equilibria in a variety of settings.               

The IBA could also be used to conduct Monte Carlo experiments on the performance of 

hedonic estimators.  Previous studies have used Wheaton’s (1974) linear programming algorithm 

for this task.  Cropper et al. (1988) compare the accuracy of predictions for MWTP made by 

competing specifications for the hedonic price function, Cropper et al. (1993) compare hedonic 

and logit methods, Banzhaf (2003) investigates the impact of discreteness in the availability of 

an amenity, and Klaiber and Smith (2009) investigate quasi-experimental approaches to policy 
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evaluation.  While all of these studies provide valuable insights, they only begin to address the 

issues associated with the current generation of hedonic estimators.  Empirical hedonic studies 

increasingly use spatial fixed effects, spatial error and spatial lag models, semiparametric and 

nonparametric methods, quasi-experimental designs, and structural estimators.  Which methods 

will provide the most accurate estimates for MWTP when some variables are omitted and others 

are measured with error?  Which structural estimators will be least sensitive to misspecification 

of the preference function?  The IBA provides the means to answer these and other important 

questions using sample sizes that are consistent with recent empirical studies.       

Finally, we feel there is some potential to use the IBA as a tool for policy evaluation.  

The ability to calibrate preference functions to reproduce the actual distribution of prices in any 

given housing market offers a micro-level alternative to the calibrated equilibrium models of 

community location choice and school quality developed by Fernandez and Rogerson (1998), 

Necheyba (2000), and others.  Our framework generalizes these models in the sense that it 

recognizes households do not just select a community.  They select an individual home within a 

community.  Likewise, households may differ in both their incomes and in their relative 

preferences for multiple housing characteristics and public goods.  While our model could be 

characterized as the first calibrated simulation framework to simultaneously capture all of these 

features, it is more rigid than some existing studies in the sense that it treats the provision of 

local public goods as exogenous.  A key feature of Fernandez and Rogerson (1998), Necheyba 

(2000), and also Walsh (2007), is the ability to model how public goods are determined 

endogenously as an equilibrium outcome of the sorting process.  For example, the quality of 

local public schools may depend on the distribution of income and education among the 

households who live in the communities that comprise the school district.  Generalizing the 
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iterative bidding algorithm to model this endogeneity would extend the literature on calibrated 

equilibrium models by providing a means to investigate the micro-level implications of public 

policy changes that affect markets for housing. 

 

Appendix:  Data and Code for Simulation 

The data and Matlab code needed to reproduce the examples and simulation results reported in 

this paper are provided in a supplemental appendix.  In order to provide micro data on the stock 

of housing in San Joaquin County without violating our contractual obligations to the 

commercial vendor, we have modified the price of each home, as well as its structural 

characteristics.  Specifically, we added random shocks to each of the following variables: sale 

price, number of bedrooms, lot size, and age.  The resulting fake data depict a housing market 

with a distribution of homes that is similar to San Joaquin’s.  Nevertheless, no individual 

observation is identical to any actual housing transaction in San Joaquin County.  Therefore, the 

fake data we provide online have no commercial or research value beyond enabling others to 

reproduce our simulation results. 
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Table 1A 

Utility from housing characteristics:  3-home example 

 

A B C
income 68,910 64,500 57,000
utility from the characteristics of:

home 1 12.1 25.7 17.0
home 2 10.3 20.3 10.3
home 3 10.8 21.6 9.7

Household

 
 

 

 

Table 1B 

Tracking the progress of the iterative bidding algorithm: 3-home example a 

A B C
1 1 64,500 68,909 64,499 56,999 1C
1 2 56,118 43,398 64,265 56,117 1D
1 3 55,444 53,276 62,298 55,443 1E  
2 1 64,354 64,500 64,353 56,999 not shown
2 2 42,556 42,555 30,032 56,117 not shown
2 3 52,760 52,759 55,444 31,550 not shown  
. . . . . .
. . . . . .
. . . . . .

13 1 64,308 64,308 64,307 56,983 1F
13 2 42,289 42,288 19,193 42,289 1F
13 3 52,597 52,596 52,597 31,079 1F  
14 1 64,308 64,308 64,307 56,983 1F
14 2 42,289 42,288 19,193 42,289 1F
14 3 52,597 52,596 52,597 31,079 1F  

Price Corresponding 
Figure

Bids by Household:IBA 
Iteration Home

 
a Bold bids identify the household assigned to the home being auctioned. 
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Table 2 

Summary statistics and regression results for San Joaquin County, CA a 

Mean Std. Dev. Min Max Coef t-stat

saleprice ($1000) 128 51 30 372 ---- ----

bedrooms (#) 3.08 3.08 3.08 3.08 -4,627 -7.05

building size (1000 sqft) 1.55 0.50 0.33 6.09 64,634 44.78

lot size (1000 sqft) 7.72 6.78 1.32 214.32 661 5.36

age (years) 25.92 20.96 1.00 98.00 -400 -19.46

mean time-to-work (minutes) 29.90 8.47 15.86 59.74 858 10.91

median household income ($1000) 47.48 15.35 11.19 85.00 401 11.29

population under 18 (%) 31.15 5.54 12.10 43.96 -1,795 -20.88

distance to grazing land (km) 8.28 4.40 0.03 16.01 -1,141 -10.09

distance to water (km) 7.74 5.49 0.00 27.26 857 10.97

STAR 10th grade math score (%) 70.53 10.50 54.00 80.00 118 3.07

structural 
characteristics        
of home

Census tract 
demographics

Public goods              
and amenities

 
a Data contain 9,634 observations on homes sold between 1995 and 1998.  Prices and income are measured in 
constant $1999 dollars.  Regression results are from a linear model with all variables measured in levels.  T-statistics 
are based on heteroskedasticity-robust standard errors.  R2=0.74.  
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Table 3   

Monte Carlo analysis of the impact of market size on equilibria  
mean (standard deviation) from 30 replications 

N min 5th 25th 50th 75th 95th max mean std skew kurt itera timea timea

IBA IBA LPA

5.2 5.9 8.6 11.2 15.0 23.4 36.3 12.5 5.5 1.4 5.6 531 5 36
(0.5) (0.6) (0.6) (0.6) (0.7) (1.7) (5.0) (0.5) (0.5) (0.3) (1.5) (276) (2) (8)

5.1 5.8 8.7 11.2 15.1 23.9 42.2 12.6 5.7 1.5 6.5 929 35 795
(0.2) (0.2) (0.3) (0.3) (0.4) (0.9) (4.3) (0.3) (0.3) (0.1) (1.2) (425) (16) (227)

5.0 5.8 8.7 11.3 15.1 23.9 48.0 12.6 5.8 1.6 7.1 1,852 238 10,175
(0.1) (0.2) (0.2) (0.3) (0.3) (0.6) (7.2) (0.2) (0.2) (0.2) (2.0) (1,786) (229) (4,501)

5.0 5.7 8.6 11.2 15.1 23.8 52.6 12.5 5.8 1.6 7.7 2,150 1,016 ---
(0.0) (0.1) (0.2) (0.2) (0.3) (0.5) (10.4) (0.2) (0.1) (0.2) (2.3) (663) (328) ---

9634 2.5 5.5 8.3 11.1 14.2 20.7 35.6 11.7 4.7 1.0 4.7 --- --- ---

Estimated Distribution of Equilibrium Hedonic Prices ($1,000)

True Distribution of Prices ($1,000)

200

500

1000

2000

 
a Iter is the number of iterations of equation (6.c) required for convergence to an equilibrium and time is the 
computational time (in seconds) on a standard desktop computer with a Pentium 4 processor running a 32-bit 
version of Windows for the iterative bidding algorithm (IBA) developed here and the linear programming algorithm 
(LPA) used in previous studies. 
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Table 4 

Equilibrium sorting across school districts (N=2000) a 

School 
District

Math Score 
Quantile rent income αschool MWTP

Lincoln 78.3% 12,080 53,232 2.92 24

Lodi 74.3% 13,274 57,697 1.81 16

Stockton 53.6% 9,136 33,557 1.08 9

Escalon 74.3% 16,248 81,317 1.75 18

Manteca 80.1% 12,785 58,056 2.44 21

Ripon 73.5% 13,270 59,011 1.60 15

Tracy 78.7% 15,787 71,739 1.88 17
       

a The figures in the table reflect an average over 30 Monte Carlo replications. 
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Table 5   

Comparison between capitalization rates and marginal willingness to pay  
(means and standard errors from 30 Monte Carlo replications) 

minimuma maximuma minimuma maximuma

10.36 19.15 15.61 12.36 13.34 16.66 17.86
(1.65) (3.70) (1.42) (2.70) (3.47) (2.99) (3.45)

10.19 19.79 15.52 12.35 12.53 16.06 17.16
(1.38) (2.20) (0.72) (1.88) (2.03) (2.00) (2.53)

9.44 21.01 15.76 11.25 11.54 17.13 18.43
(0.68) (1.74) (0.55) (1.58) (1.65) (1.43) (1.52)

9.35 21.01 15.65 11.40 11.56 16.87 18.30
(0.47) (1.06) (0.40) (0.75) (0.79)  (1.11) (1.15)

500

1000

2000

Capitalization Rates for 15 Point Improvement to:

Stockton Manteca

200

Average MWTP for households in:

N Stockton 
(score=53.6)

Manteca 
(score=80.1)

San Joaquin 
County

 
a The minimum and maximum capitalization rates are calculated over the set of potential equilibria on each Monte 
Carlo replication. 
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A. Three Bid Indifference Strings   B. Initial Hyperrectangle 

 

 
C. First Auction for Home 1    D. First Auction for Home 2 

 

 
E. First Auction for Home 3    F. Convergence of the IBA 

 

Fig. 1.  A graphical depiction of the iterative bidding algorithm (axes measure $1000) 
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Fig. 2.  San Joaquin County, California 
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A.  Deviations from CDF ( N = 200 )  B.  Deviations from PDF ( N = 200 ) 

 

 
C.  Deviations from CDF ( N = 2000 )  D.  Deviations from PDF ( N = 2000 ) 

 

 

Fig. 3.  Reproducing the distribution of housing prices in San Joaquin County, California 
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Fig. 4.  Multiplicity of equilibria in a sample of 100 homes 
 


